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Foreword 

The Monitoring & Environmental Chemistry Working group (MECW) is a Euro Chlor science 
group which represents the European chlor-alkali industry. The main objectives of the 
group are to identify both natural and anthropogenic sources of chlorinated substances, 
study their fate, gather information on the mechanisms of formation and degradation in the 
environment and achieve a better knowledge of their environmental persistence. The 
MECW often uses external specialists to assist in developing reports that review the latest 
knowledge of the different aspects mentioned. The principal investigator collects 
information from the scientific literature and available data regarding natural or 
anthropogenic emissions in the environment to provide a comprehensive overview. 
 
Dr James Franklin, a physical chemist by training, founded his own environmental 
consulting company in 2004. He has a particular interest in atmospheric chemistry. Prior to 
setting up his own business, Dr Franklin worked in the central research department of 
Solvay (Brussels, Belgium) for more than 33 years. During this time he worked mainly on 
the development of production processes for organic chlorine and fluorine compounds as 
well as on their applications and how they impact the environment. 
 
Long-range transport (LRT) of chemicals is a key issue that continues to attract the 
attention of scientists, NGOs, environmental journalists and general public. The reason for 
such wide-spread interest is that the environmental impact of chemical use not only 
remains at their place of origin, but can be carried by air currents, surface water or 
migrating animals to regions around the globe. 
 
This report examines the scientific literature on experimental observations demonstrating 
how natural and man-made substances are transported to locations remote from their point 
of release. It also looks at the timescales involved in atmospheric long-range transport 
including the concepts of “global fractionation” and the “grasshopper effect”. Dr Franklin 
reviews the mathematical models used to simulate atmospheric distribution, degradation 
and transport of chemicals. He also looks at the models used to compare LRT potential of 
different substances and determine the sources of pollutants arriving at a given receptor 
location or how the receptors are affected by a given source. In addition to the above, the 
report covers the international regulatory agreements set up to reduce the trans-boundary 
LRT of pollutants and the criteria adopted in different conventions for expressing the 
propensity of a substance to undergo LRT. 
 
The potential impacts of LRT on human health and ecosystems are mentioned, but not 
analysed in any depth. No assessment of the risks associated with the LRT of specific 
substances is provided. 
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Summary 

Long-range transport (LRT) of chemicals is a key issue being addressed by politicians at 
international level due to the far-reaching consequences of the phenomenon. As a result of 
the mobile nature of the Earth’s atmosphere, every region of the globe is affected by air 
pollutants. Often, they travel thousands of miles from where they originate. As well as air, 
water and migratory animals also aid this process. 
 
The time it takes for a substance to move from one area of the world to another depends on 
the substance and atmospheric conditions. Intercontinental atmospheric transport generally 
occurs over three to 30 days. Pollutants that occur in the troposphere will typically travel 
further and faster than those that are advected horizontally in the atmospheric boundary 
layer. On the other hand, dissolved species transported by ocean currents from northern 
mid-latitudes to the Arctic can take several years. 
 
Volatile pollutants with atmospheric lifetimes of years or longer experience no impediment 
to LRT once they are emitted to air. Whatever the location and timing of release, their 
concentrations become practically uniform throughout the atmosphere, so the emission of a 
given amount anywhere on Earth makes the same contribution to global pollution. For air 
pollutants with lifetimes of several months, concentrations become uniform within the 
hemisphere of emission, but not in the opposite hemisphere. Crossing the equator takes 
about a year. For shorter-lived pollutants with atmospheric lifetimes of days or weeks, the 
tendency for the substance to undergo LRT depends on its physico-chemical properties as 
well as how it entered the environment, the location and time of its emission and prevailing 
meteorological conditions. 
 
Trans-boundary movement applies to man-made substances such as pesticides and lead, 
as well as part man-made - part natural substances such as carbon monoxide and nitric 
oxide. Similarly, purely natural substances, including desert sand and sea salt, are subject 
to such environmental displacement. 
 
LRT is not in itself a concern, but only a trigger for potential concern. In many cases, 
however, deposition followed by uptake into living organisms and possible accumulation 
through the food chain, is a prerequisite for damage to the environment and human health. 
Each chemical should be evaluated on a case-by-case basis, with the LRT potential 
assessed in conjunction with properties such as persistence, bioaccumulation, toxicity and 
the capacity to affect the atmosphere. 
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1 Introduction: What is meant by Long-Range Transport of 

chemicals and why is it of interest? 

In this chapter, a brief introduction is given to the concept of Long-Range Transport (LRT) 
of chemicals in the environment and its consequences. All the aspects introduced in this 
section will be developed in greater depth in the following chapters of this dossier. 
 
The “Transboundary” nature of air pollution 
On account of the mobile nature of the Earth’s atmosphere, all regions unwillingly – and in 
some cases unwittingly – receive air pollutants not only from their close neighbours but also 
from further afield. In turn, the substances these regions themselves release to air can be 
transported to other territories. 
 
This phenomenon has become particularly acute with the rise of industrialisation, but long-
range atmospheric transport of man-made pollutants is now known to have existed, to 
some extent, for millennia. 
 
Transport through media other than air 
Air is the medium most often considered responsible for the LRT of chemicals in the 
environment on account of its ubiquitous nature and its facility of movement. However, 
other mobile media may also contribute to such transport, depending on the physico-
chemical properties and point of release of the substances concerned. 
 
The most noteworthy of these other media are water (oceans, rivers and drifting ice) and, to 
a lesser extent, migratory animals. For the sake of completeness, one should also include 
anthropogenic transport, for commercial or other purposes, which can contribute to 
disseminating chemicals in the environment far from where they are produced or used. 
 
The global nature of Long-Range Transport 
The potential of a chemical for LRT, sometimes referred to as its “characteristic travel 
distance” or “spatial range”, depends not only on its intrinsic physico-chemical properties, 
but also on its mode and point of release to the environment. The prevailing meteorology or 
ocean currents are very important. 
 
LRT is generally taken to mean transport over distances of at least a few hundred 
kilometres, i.e. far enough for the substance to cross the borders of smaller nations. 
However, intercontinental transport, over thousands or even tens of thousands of 
kilometres, has also become the focus of particular concern, especially in connection with 
the pollution of the erstwhile pristine regions within the polar circles. 
 
Well-established examples of LRT will be provided in this dossier, for a wide range of 
anthropogenic and natural substances. The mechanisms and preferential pathways will be 
outlined, together with the models used to simulate transport and the methodologies 
developed for assessing LRT potential and investigating source-receptor relationships. 
 
Consequences of Long-Range Transport 
LRT becomes relevant only when the chemical transported has some adverse impact on 
human health or on ecosystems far from its source. 
 
Certain volatile compounds may undergo LRT without being deposited to the Earth’s 
surface, but may nevertheless exert a deleterious influence on the atmosphere itself 
(through ozone depletion, contribution to greenhouse warming, photochemical smog 
formation, etc.) or on human health by inhalation. 
 
Other substances may lead to harmful effects only when they are deposited from the 
atmosphere to land or water bodies. 
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It should therefore be emphasised that LRT is not, in itself, a concern, but only a trigger for 
potential concern. When evaluating a chemical’s hazard potential, LRT needs to be 
assessed in conjunction with adverse properties, such as persistence, bioaccumulation, 
toxicity and the capacity to affect the atmosphere. 
 
The ethical dimension of Long-Range Transport and the enacting of international 
regulatory agreements 
The perceived injustice of passively undergoing the consequences of some other nation’s 
pollutants, at the whim of air or water currents, has led to the enacting of a number of 
international agreements aimed at mitigating the release and impact of persistent, 
bioaccumulative and toxic pollutants. These agreements will be discussed, together with 
the “criteria” they adopt for characterising the propensity of a substance to undergo LRT. 
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2 Selected examples of observational evidence for 

atmospheric Long-Range Transport 

All regions of the globe are affected to a greater or lesser extent by the atmospheric LRT of 
chemicals. The scientific literature on the subject is vast and the present dossier is not 
intended to give a comprehensive coverage of it. The aim is merely to illustrate the 
phenomenon with a limited number of well-documented examples for a broad range of 
substances, not all of which are man-made. 
 
Some of the substances discussed are deposited to ground level following atmospheric 
LRT and may thus exert harmful effects in the biosphere. Others are too volatile to undergo 
significant deposition, but may lead to an undesirable impact through their presence in the 
atmosphere (contribution to ozone depletion, global warming, photochemical smog, etc.). 
Furthermore, their degradation products may be deposited. 

2.1 Substances of natural origin 

2.1.1 Sand, dust and ash 

For many citizens in their everyday life, the most tangible evidence for atmospheric LRT is 
provided when wind-borne sand originating from a faraway desert casts a reddish-yellow 
blanket on their newly washed automobiles, or when it blemishes the surface of freshly 
fallen snow. 
 
The LRT of desert sand, or of clayey “loess” dust, has been observed to occur episodically 
or according to a seasonal cycle and to follow a number of trajectories worldwide (Rea, 
1994; Simpson et al, 2003a; Husar, 2004). Some prime examples of such transport, 
occurring over time-scales of days or weeks, are the following: 

 from the Sahara/Sahel region westwards to the Caribbean and the central part of the 
American continent or from North Africa to the Mediterranean area and Europe, as far 
as the United Kingdom and the Baltic Sea, or even eastwards to Asia (Moulin et al, 
1997; Herman et al, 1997; Alpert and Ganor, 2001; Griffin et al, 2001a; DeMott et al, 
2003; Ansmann et al, 2003; Grousset et al, 2003; Piketh and Walton, 2004; Rogora et 
al, 2004; Collaud Coen et al, 2004; Aymoz et al, 2004; Sodemann et al, 2005; Tanaka 
et al, 2005; Barkan et al, 2005; Chiapello et al, 2005); 

 from the Gobi Desert and other areas in China and Mongolia, eastwards across the 
Pacific Ocean and North America (Wilkening et al, 2000; Husar et al, 2001; Sassen, 
2002; Takemura et al, 2002; Jaffe et al, 2003a; Gong et al, 2003; DeBell et al, 2004; 
Perry et al, 2004), occasionally reaching Greenland and Europe, after covering a 
distance of more than twenty thousand kilometres (Biscaye et al, 2000; Grousset et al, 
2003); 

 from southern Africa to Australia, and from Australia to New Zealand (Sturman et al, 
1997; Marx et al, 2005). 

 
Dust storms occurring in Asia have been shown to be responsible for nucleation of ice 
clouds over Alaska at temperatures far warmer than those expected for normal cirrus cloud 
formation (Sassen, 2005). 
 
Surface aerosol concentration enhancements at northern mid-latitudes arising from 
intercontinental transport of dust have been reviewed by Holloway et al (2003). With the 
spread of desertification, LRT of dust can be expected to become an increasing concern. 
 
Volcanic ash can undergo LRT in a similar manner to sand and dust (Rea, 1994; Simpson 
et al, 2003a). 
 
Satellite imagery provides a vivid confirmation of the intercontinental transport of dust and 
other particles, as well as of certain gases (e.g. Hsu et al, 1999; Engel-Cox et al, 2001; 
Wooster and Strub, 2002; Damoah et al, 2004). 
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2.1.2 Sea salt 

Another abundant natural mineral substance undergoing atmospheric LRT is sea salt 
(Gustafsson and Franzén, 2000; Fischer, 2001; Gong et al, 2002). However, LRT is 
efficient only for a fraction of the aerosol particles, namely the sub-micron sized ones, 
which remain aloft longer than their larger counterparts, unless the latter are lifted into the 
upper troposphere by forceful convection such as can occur in the tropics (Ikegami et al, 
1994). 

2.1.3 Natural radionuclides 

The naturally-occurring radioisotope 
210

Pb has been widely used for investigations of 
transport and removal processes in the lower troposphere (Rehfeld and Heimann, 1995; 
Dueñas et al, 2003; Lee et al, 2004). It is formed by the decay of 

222
Rn emanating from the 

Earth’s crust. This radon isotope has a relatively short half-life (3.8 d) and is therefore 
concentrated mainly in the continental planetary boundary layer. On the other hand, the 
LRT of 

210
Pb, with a decay half-life of 22 y, is limited only by physical removal processes. 

Transport of this isotope to the polar regions has been demonstrated (Lambert et al, 1990). 

2.1.4 Volatile organic compounds 

For want of a better descriptor, the term “volatile organic compound” (VOC) will be used in 
this dossier to denote any organic species that partitions preferentially to the atmosphere 
and that has a lifetime of at least a few days, so that LRT becomes possible. Note that this 
usage is somewhat different from the terminology adopted in connection with the formation 
of tropospheric ozone. In that case, “VOC” is reserved for the particularly reactive organic 
gases (with lifetimes of hours or days) that are essential ingredients in local “photochemical 
smog” production. 
 
Among the volatile organic compounds of almost exclusively natural origin are certain 
halogenated aliphatic species: CH2Br2 (approximate lifetime 0.3 y), CH2BrCl (0.4 y), CHBr3 
(4 weeks), CHBr2Cl (0.2 y), CHBrCl2 (0.2 y), CH3I (1 week), C2H5I (4 d) and CH2ICl (a few 
hours) (Solomon et al, 1994; Singh and Fabian, 1999; Baker et al, 2001; Ballschmiter, 
2003; Keppler et al, 2003; Harper and Hamilton, 2003; Quack and Wallace, 2003; Quack et 
al, 2004; Chuck et al, 2005; Zhou et al, 2005). 
 
On account of their low water solubility and high volatility, none of these organic halogen 
compounds will be removed significantly from the atmosphere by wet or dry deposition. The 
ones with lifetimes of months or more are long-lived enough to become fairly well 
distributed throughout the hemisphere in which they are emitted (WMO, 2002; Thompson et 
al, 2004). Following atmospheric LRT, only their degradation products (i.e. mainly 
hydrohalic acids) will reach the biosphere. 

2.1.5 Biota 

Pathogenic microbes can be transported over long distances through the atmosphere and 
hence potentially impact ecosystems and human health far from their source region. For 
example, the levels of various cultivable airborne plant and human pathogens were shown 
to increase sharply in the Caribbean following African dust events (Griffin et al, 2001a). 
Furthermore, it has been observed that viable fungal spores can be transported not only 
with mineral dust, but also with smoke from biomass fires (Mims and Mims, 2004). 
Australian pollens and other organisms are regularly transported by wind to New Zealand 
(Sturman et al, 1997). Muñoz et al (2004) provide evidence in support of the hypothesis 
that the close affinities of the floras of the continents and islands in the southern 
hemisphere are the consequence of LRT of airborne spores and seeds. 
 
Griffin et al (2001b) provide a fascinating review of the LRT of airborne pathogens, 
including those responsible for meningococcal meningitis, potato blight, foot-and-mouth 
disease and a whole host of other plant and animal afflictions. 
 
Atmospheric monitoring and modelling studies have been used to detect illegal cultivation 
of marijuana, by combining pollen measurements in the ambient air in Spain with the back-
analysis of trajectories originating in North Africa (Cabezudo et al, 1997). 
 
Even macro-scale living organisms can be subject to a form of “assisted” atmospheric LRT. 
Thus, the displacements of swarms of African desert locusts - westwards across the 
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Atlantic, or northwards to Europe - are made possible not only by the insects’ intrinsic flight 
capabilities, but also by the prevailing winds (Rosenburg and Burt, 2001). 

2.2 Substances Having both Natural and Anthropogenic Sources 

This section provides examples of the LRT of a range of compounds that have significant 
natural sources as well as originating from human activities. 

2.2.1 Major greenhouse gases: Carbon dioxide, methane and nitrous oxide 

Atmospheric emissions of carbon dioxide are mainly of natural origin and sources and sinks 
of CO2 were in equilibrium until the beginning of the industrial era. However, since then, 
combustion of fossil fuels and other human-related activities have led to additional 
emissions of CO2, disturbing the balance. The resulting rise in concentrations of CO2 and 
the “greenhouse effect” that they are believed to cause have led to numerous scientific 
studies and regulatory initiatives that are beyond the scope of this dossier. However, it is 
appropriate to point out that the atmospheric persistence of CO2 is long enough (i.e. 
centuries) for this gas to become well mixed throughout the atmosphere, so emissions 
anywhere on the planet will contribute to the global background of CO2 and the climate 
effects ascribed to it. 
 
The same conclusion is valid for two other important greenhouse gases that are of partly 
natural and partly anthropogenic origin: methane (lifetime 12 years) and nitrous oxide 
(lifetime 114 years) (Conway et al, 2004).  

2.2.2 Carbonaceous particles 

Together with mineral dust and water-soluble inorganic salts, carbonaceous particles are a 
major component of the overall aerosol burden of the lower atmosphere. They are formed 
and emitted, together with a broad variety of volatile compounds, during the incomplete 
combustion of biomass, fossil fuels and other organic substances. Since biomass burning 
includes both forest and grassland wildfires, agricultural burning, and domestic fires for 
heating and cooking purposes, carbonaceous aerosols clearly arise from both natural and 
anthropogenic sources (Cooke and Wilson, 1996; Liousse et al, 1996; Jacobson et al, 
2000). 
 
From a historical perspective, it is interesting to note that in 18

th
 century England, 

shepherds high up on the moors already observed “moorgroime”, a black deposit on the 
wool of sheep that originated from coal burning in the cities. In the following century, there 
was some evidence for “coal dust” from Britain reaching Norway (Brimblecombe, 2001). 
 
Today, fossil-fuel combustion in the main industrialised regions of North America, Europe 
and Asia makes a major contribution throughout the year to carbonaceous particle 
emissions. In addition, huge vegetation fires break out regularly in both the tropics (Africa, 
South America and South East Asia) and in the boreal and mid-latitude regions (Canada, 
the United States, Russia, Scandinavia and the Mediterranean area). Furthermore, 
agricultural biomass burning occurs particularly in the tropics during the dry season 
(Crutzen and Andreae, 1990). 
 
In addition to the “primary” emissions of solid particles, “secondary” organic aerosols can 
be formed in the atmosphere by reactions involving gaseous natural or anthropogenic 
precursor compounds, especially the biogenic terpenes (Jacobson et al, 2000; Kanakidou 
et al, 2000). 
 
While the chemical composition and physical properties of the carbonaceous particles 
formed are highly complex, variable and only partially characterised as yet, it is recognised 
that such aerosols can affect public health, weather, climate, visibility, etc.. Understanding 
the atmospheric LRT of these particles is therefore essential for assessing the impact they 
may exert far from their source regions. 
 
In addition to elemental carbon, such particles contain a range of organic substances, some 
of which may be harmful (e.g. the carcinogenic polycyclic aromatic hydrocarbons). 
Furthermore, the particles can also act as “sponges”, taking up low-volatility compounds 
from the gaseous phase of the atmosphere and hence determining the LRT patterns of the 
latter. 
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Certain specific biomass thermal degradation products present in the particles act as 
tracers or “biomarkers”, enabling the nature of the source to be identified and hence 
providing evidence for the occurrence of LRT (Simoneit and Elias, 2001; Simoneit, 2002). 
 
The emissions and transport of carbonaceous aerosols from natural and anthropogenic 
sources have been simulated on a global scale using a number of three-dimensional 
models (Cooke and Wilson, 1996; Liousse et al, 1996; Kanakidou et al, 2000; Koch, 2001; 
Chung and Seinfeld, 2002; Damoah et al, 2004). Convective processes due to fires can 
convey the combustion products and the substances derived from them into the free 
troposphere – and even the lower stratosphere (Fromm et al, 2000) – while large-scale 
atmospheric circulation distributes them to locations far from their source regions (Crutzen 
and Andreae, 1990; Spichtinger-Rakowsky and Forster, 2004; Damoah et al, 2004). 
 
To some extent, carbonaceous particles may follow the atmospheric transport pathways 
described above for desert sand and dust. However, since different source regions are 
involved, other trajectories will also come into play. 
 
The pollution plumes from Canadian forest fires have been shown to affect the eastern and 
southeastern United States (Wotawa and Trainer, 2000; Sapkota et al, 2005), while those 
from both Canadian and U.S. fires reach continental Europe within about 1 week, after 
passing over Greenland and the Atlantic (Hsu et al, 1999; Forster et al, 2001; Fiebig et al, 
2002). 
 
Smoke from a severe forest fire in Russia in 2003 was shown to circumnavigate the globe 
in 17 days (Damoah et al, 2004). One plume travelled eastwards to Alaska, Canada, and 
Scandinavia, and then on to Eastern Europe, where it merged with smoke advected 
westwards from the same fire. A westward path to Sweden and Germany was also taken 
by a plume from a peat fire near Moscow in 2002 (Spichtinger-Rakowsky and Forster, 
2004). Smoke from Russian forest fires has also been shown to affect the Korean 
Peninsula (Lee et al, 2005). 
 
Smoke arriving in Greenland could be attributed not only to North American sources, but 
also to fires occurring in Russia and China (Hsu et al, 1999). Observations on black carbon 
in the Arctic have been reviewed by Iversen (1996) and Bottenheim et al (2004). In winter 
and spring, industrial regions in Eurasia are the major sources of carbonaceous aerosols 
reaching Barrow, Alaska, with some contribution from western North America and Western 
Europe (Polissar et al, 2001). 
 
Particles arising from combustion sources in Asia were demonstrated to reach the U.S. 
west coast (Jaffe et al, 2001; Bertschi and Jaffe, 2005). Martin et al (2002) showed that not 
only could polluted air parcels from Asia cross the Pacific to North America, but in certain 
cases they might pick up further contaminants there before looping back over the Pacific 
towards Indonesia. Furthermore, anthropogenic emissions from Europe and biomass 
burning emissions from Africa make major contributions to the Asian outflow over the 
Pacific (Bey et al, 2001). 
 
Depending on their point of origin, emissions from biomass burning in southern Africa can 
be carried westwards over the Atlantic or eastwards over the Indian Ocean, in some cases 
reaching Australia (Herman et al, 1997; Sturman et al, 1997; Piketh and Walton, 2004) or 
the Pacific islands of Samoa and Fiji (Thompson, 2004). 
 
Pollution from biomass burning in tropical or sub-tropical South America can be exported 
either eastwards over the Atlantic or westwards over the Pacific (Schultz and Bey, 2004). 
 
Vegetation fires raging on the islands of Sumatra and Borneo in 1997-1998 cast a blanket 
of smog over the region, including the Malaysian Peninsula, exposing more than 20 million 
people to potentially dangerous levels of air pollution for many months (Heil and 
Goldammer, 2001; Wooster and Strub, 2002; Langmann and Heil, 2004). The “brown 
cloud” arising from biomass and fossil fuel burning is a regular feature over broad areas of 
Asia (ASEAN, 2001; UNEP-C

4
, 2002). 

 



 

 
11 

Fall-out from Kuwaiti oil-field fires in 1991 was traced as far as Hawaii (Lowenthal et al, 
1993). Similarly, elemental carbon from oil fields burning in Iraq in March 2003 was 
deposited in Japan a few days later (Tazaki et al, 2004). 
 
In the same way as for dust particles, the lifetimes of carbonaceous aerosols, up to a week 
or so (unless they are lofted into the stratosphere), are far too short for them to cross from 
one hemisphere to the other through the “intertropical convergence zone”. This process 
involves an exchange time of about one year (Ballschmiter, 1992). 

2.2.3 Other combustion by-products and related oxidants: CO, NO, O3, etc. 

The various combustion processes mentioned above in connection with the formation of 
carbonaceous aerosols lead to a wide range of by-products. This includes carbon 
monoxide, reactive organic substances (more commonly categorised as VOCs and nitric 
oxide, all of which are precursors in the formation of tropospheric ozone and the related 
oxidant peroxyacetyl nitrate (PAN). 
 
Ozone formation is often considered to be a problem associated with large cities or 
industrial areas in summer. However, since combustion by-products are subject to LRT, 
they contribute to rising ozone levels in background air far from populated regions, a 
phenomenon sometimes known as “global smog”, for which a major driver is biomass 
burning (Fishman et al, 1996; Lelieveld et al, 2004). 
 
Apart from any specific environmental or health impact the combustion by-products may 
exert by themselves, a related concern is therefore the ozone they are capable of 
generating far from their point of emission. 
 
Furthermore, ozone present in the free troposphere – that is above the planetary boundary 
layer which extends to about 1 km altitude – has a lifetime of a few weeks (Thompson, 
2004). This is long enough for it to undergo LRT itself, in addition to any transport of its 
precursors, such as NO2 whose lifetime is only about two days in the boundary layer, but 
up to a week in the middle and upper troposphere (Wenig et al, 2003; Schaub et al, 2005), 
and CO which has a lifetime of months (Seinfeld and Pandis, 1998, pp. 85-86).  
 
The global atmospheric pathways travelled by combustion by-products are similar to those 
described above for the carbonaceous aerosols having the same origin. They are however 
not necessarily identical, mainly on account of the species-dependent chemical and 
physical removal processes, which determine the lifetimes of the individual substances.  
 
Nevertheless, to avoid excessive repetition, these transport pathways are not described in 
detail. Further information on LRT of ozone and its precursors can be found in the following 
recent papers and the references cited therein: Bertschi and Jaffe (2005); Bey et al (2001); 
Bottenheim et al (2004); Cooper and Parrish (2004); Cooper et al (2004a, 2004b); Creilson 
et al (2003); de Gouw et al (2004); Duncan and Bey (2004); Formenti et al (2002); Forster 
et al (2001); Goldstein et al (2004); Heald et al (2003); Holzer et al, 2003; Hudman et al, 
2004; Huntrieser and Schlager (2004); Huntrieser et al (2005); Jacob et al (1999, 2003); 
Jaffe et al (2001, 2003b, 2004); Kato et al, 2002; Langmann and Heil (2004); Langmann et 
al (2003); Lawrence (2004); Li et al (2002); Liu et al (2002, 2005); Martin et al (2002); Naja 
et al (2003); Parrish et al (2004); Penkett et al (2004); Piketh and Walton (2004); Pochanart 
et al (2001, 2004); Price et al (2004); Schaub et al (2005); Schultz and Bey (2004); Stohl 
and Trickl (1999); Spichtinger et al, 2001; Spichtinger-Rakowsky and Forster (2004); Stohl 
et al (2002a); Thompson (2004); Trickl et al (2003); UNECE (2003); Wenig et al (2003); 
Wild and Akimoto (2001); Wilkening (2001); Wilkening et al (2000); Wotawa and Trainer 
(2000); Wotawa et al (2001); Yienger et al (2000). 
 
It is interesting to note that, according to modelling studies, there is a significant 
contribution both of North American anthropogenic emissions to surface levels of ozone in 
Europe and of European emissions to levels of ozone in North America, at least under 
certain meteorological conditions (Li et al, 2002; Guerova et al, 2005; Auvray and Bey, 
2005). Asia is affected by emissions from both Europe and North America (Liu et al, 2002). 
Roelofs et al (2003) demonstrated that ozone levels in the eastern Mediterranean area 
were significantly influenced by emissions from Southeast Asia, North America and Europe. 
Wild and Akimoto (2001) suggested that European fossil fuel emissions had a lower 
potential than Asian or North American emissions to add to ozone levels in the middle and 
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upper troposphere. Lelieveld et al (2002) showed that in summer the middle troposphere of 
the Mediterranean area receives a westerly inflow of CO and other pollutants from Asia and 
North America, while the upper troposphere is influenced by Asian pollution coming from 
the east. 
 
Ozone pollution is clearly shifting from a purely local concern to a global issue, since LRT of 
O3 and its precursors is now recognised to contribute significantly to regional budgets 
(Creilson et al, 2003; Holloway et al, 2003; Chatfield et al, 2004; Schultz and Bey, 2004; 
Sauvage et al, 2005). 

2.2.4 Sulphur dioxide and sulphate aerosols 

Atmospheric emissions of sulphur dioxide result mainly from the combustion of sulphur-
containing coal and other fossil fuels, but the contributions from volcanoes and the biogenic 
precursor dimethyl sulphide are non-negligible (Benkovitz et al, 2004). Gas-phase and in-
cloud oxidation of SO2 leads to sulphuric acid. Together with nitric acid arising from 
combustion-derived NO and other anthropogenic and natural sources of nitrogen oxides, 
sulphuric acid is one of the main components of “acid rain” (Bouwman et al, 2002). 
 
Air pollution by long-range transported SO2 is not a recent problem. Seinfeld and Pandis 
(1998, p. 1030) cite an incident occurring three centuries ago, when SO2 emitted from 
“industry” in the United Kingdom travelled far downwind and remained at a high enough 
concentration to cause bleaching of dyed cloth in France. 
 
Despite wet scavenging of SO2 as sulphate after oxidation in the gaseous and aqueous 
phases, intercontinental transport of SO2/sulphate undoubtedly occurs, as demonstrated by 
the following examples: 

 instances of trans-Pacific transport of SO2/sulphate from Asia to the Californian coast 
have been reported (Brock et al, 2004); 

 sulphate deposition in the Canary Islands has been shown to be due mainly to North 
American sources under certain meteorological conditions (Benkovitz et al, 2003); 

 10 % of wet deposition of sulphur over western Europe was calculated to arise from 
North American emissions (Tarrasón and Iversen, 1992); 

 the boundary layer “haze” that afflicts the Arctic, particularly in winter and spring, is 
made up mainly of sulphate aerosols arising from SO2 emissions in Europe and the 
former Soviet Union, while sources further from the Arctic continent also contribute 
significantly to pollution by sulphur species in the free troposphere (Barrie et al, 1989; 
Iversen, 1989, 1996; Bottenheim et al, 2004; Heidam et al, 2004). 

 
Furthermore, transport between neighbouring countries on a regional scale is still a major 
concern, despite considerable reductions in SO2 emissions in the developed nations over 
the last few decades. 
 
For example, rapid economic development in China, coupled with the use of coal as a 
major source of energy, is considered to make a significant contribution to sulphuric acid 
deposition in other Asian countries and even the central northern Pacific (Carmichael et al, 
2002; Tu et al, 2004), although quantitative modelling is subject to uncertainties, on account 
of the sensitivity to wet removal parameterisation. 
 
Many of the smaller sulphur-emitting countries in Asia and the Indian sub-continent receive 
more sulphur deposition than they emit (Arndt et al, 1998). 
 
South-East Asia (Indonesia, Malaysia, The Philippines and Singapore) is estimated to 
receive a quarter of its sulphur deposition from shipping activities (Guttikunda et al, 2001). 
 
Sulphur dioxide emissions from southern Africa are believed to reach Amsterdam Island, 
thousands of kilometres away, while those from Australia may well affect New Zealand 
(Sturman et al, 1997). 
 
Pollution of the Aegean Sea and eastern Mediterranean area by sulphate aerosols and 
other substances originating from emissions in continental Europe has been discussed by 
Wanger et al (2000) and Formenti et al (2002). 
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Benkovitz et al (2001) have carried out modelling studies to show how the atmospheric 
transport and loading of SO2 and sulphate are influenced by weather patterns over North 
America, the North Atlantic and Europe. For instance, under certain meteorological 
conditions, it was shown that transport of SO2/sulphate from Europe to Iceland was likely. 
 
Volcanoes can inject SO2 and other substances directly into the stratosphere. Thus the 
1991 eruption of Mount Pinatubo in the tropics (15°N) lofted tens of millions of tons of SO2 
and sulphate up to an altitude culminating close to 40 km. The resulting aerosol cloud, 
travelling westwards, straddled the equator and encircled the Earth in 21 days (Bluth et al, 
1992; Guo et al, 2004). Over a period of months, the sulphate aerosol spread towards the 
poles and ultimately contributed significantly to ozone depletion (Solomon, 1999) and 
climate cooling (Robock, 2002) on a global scale. 

2.2.5 Mercury 

Mercury is a volatile metal. The atmosphere plays a major role in the mobilisation and 
geographical redistribution of this element, for which both human-related and natural 
emissions are significant (Fitzgerald et al, 1998; Lin and Pekhonen, 1999; Bergan et al, 
1999; UNEP, 2002b; Ilyin et al, 2004). 
 
Anthropogenic releases of mercury to air arise mainly from fossil fuel combustion, 
especially coal burning in Asia. The production of metals and cement, along with waste 
incineration, also make non-negligible contributions to emissions (Pacyna and Pacyna, 
2002). 
 
Although recent studies suggest that elemental mercury’s atmospheric lifetime is only a few 
months, instead of up to two years as believed previously (Renner, 2004), this persistence 
is still sufficient for mercury to become broadly distributed at least throughout the 
hemisphere in which it is emitted. 
 
The main concern with atmospheric mercury is its oxidation to “reactive gaseous species” 
that are readily scavenged to ground level by settling particles and rain. These compounds 
can then undergo biologically mediated methylation to the bioavailable and toxic 
monomethylmercury, which can accumulate in terrestrial and aquatic food chains 
(Schroeder and Munthe, 1998; Ullrich et al, 2001; UNEP, 2002b). 
 
Prime evidence for atmospheric LRT of mercury is provided by long-term Hg concentration 
profiles in cores taken from lake sediments and peat bogs far from local sources. These 
studies show rising levels over the last century (Fitzgerald et al, 1998; Bottenheim et al, 
2004; Skov et al, 2004a; Perry et al, 2005; Steinnes and Sjøbakk, 2005). 
 
Pollution of the Arctic, which itself has no significant mercury emissions, by Hg released to 
air in populated areas at lower latitudes has been the subject of numerous investigations 
and reviews. Sources in both Eurasia and North America have been implicated (Macdonald 
et al, 2000a; Cheng and Schroeder, 2000; Lin et al, 2001; AMAP, 1998, 2002; Schroeder et 
al, 2002; Bottenheim et al, 2004). Modelling studies on transport to the Arctic have been 
performed recently (Heidam et al, 2004; Christensen et al, 2004), based on a global 
inventory of emissions of mercury from anthropogenic sources (Pacyna and Pacyna, 2002). 
“Mercury depletion events”, occurring during the Arctic (and Antarctic) spring after the polar 
sunrise and mediated by halogen species, lead to rapid oxidation of elemental mercury and 
the resulting efficient deposition of oxidised forms (Lindberg et al, 2002; Ebinghaus et al, 
2002; Bottenheim et al, 2004; Heidam et al, 2004; Skov et al, 2004a, 2004b; Fitzgerald et 
al, 2005; Douglas et al, 2005). 
 
In Antarctica, during the austral summer, reactive gaseous mercury levels have been found 
to be as high as in some industrial environments (Sprovieri et al, 2002). 
 
A global modelling study (Dastoor and Larocque, 2004) indicates frequent episodes of 
mercury transport from Europe to North America via the Arctic, in winter. On the other 
hand, in summer, mercury can be transported from North America to the northern Atlantic 
Ocean and Europe. 
 
Evidence has been provided for the transport of mercury across the northern Pacific from 
Asia to California (Steding and Flegal, 2002, 2003; Jaffe et al, 2003c, 2005). Modelling 
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studies (Seigneur et al, 2004) indicate that a significant fraction (5-36 %) of overall mercury 
deposition at various locations in the continental United States is due to Asian emissions. 
 
The results of an intercomparison of numerical models for atmospheric LRT of mercury 
have been presented by Ryaboshapko et al (2004). 
 
Ilyin et al (2004) document the greatly decreasing deposition in European countries of 
mercury arising from transboundary transport, over the timeframe 1990-2000. 

2.2.6 Volatile organic compounds 

As discussed above, a number of “volatile organic compounds” (defined for the purposes of 
this dossier as being any organic species that partitions preferentially to the atmosphere 
and that has a lifetime of at least a few days) are of overwhelmingly natural origin. Many 
others have natural and anthropogenic sources that are both significant. One such example 
is methane, already discussed above as a major greenhouse gas. But a whole range of 
other organic species also fall into this category, including ethane, propane, butane, 
benzene, acetone, methanol, etc. (Seinfeld and Pandis, 1998). Indeed, lower aliphatic 
hydrocarbons ascribed to natural gas emissions in the Gulf of Mexico were encountered 
over the Mediterranean area (Mühle et al, 2002), while a signal from industrial propane 
emissions in northern Africa was identified out over the Atlantic Ocean (Gros et al, 2004). 
 
Aliphatic halogen compounds having significant sources of both natural and anthropogenic 
origin are CH3Cl (lifetime 1.3 y), CHCl3 (0.4 y) and CH3Br (0.7 y) (Khalil, 1999; Khalil et al, 
1999; Laturnus et al, 2002; Ballschmiter, 2003; Harper and Hamilton, 2003; McCulloch, 
2003). These compounds degrade in the atmosphere and only their breakdown products 
(essentially HCl and HBr) reach the biosphere. 

2.3 Substances Primarily of Anthropogenic Origin 

2.3.1 Anthropogenic radionuclides 

For the general public, one of the most vivid, albeit tragic, demonstrations of the reality of 
atmospheric LRT was experienced after the explosion occurring in the nuclear reactor at 
Chernobyl, Ukraine, in April 1986. Following this largest reported accidental release of 
radioactive material, the initial pollution plume dispersed to the northwest and reached 
Finland and Sweden. However, broad areas of Europe were soon blanketed by a 
radioactive cloud (Anspaugh et al, 1988; Pöllänen et al, 1997; Brandt et al, 2002; UNEP, 
2002a; Robertson, 2004). In Finland, the first temporary increases in radioactivity were 
observed 1-2 days after the initial explosion (Jylhä, 2000a, 2000b). Fission products from 
Chernobyl, such as 

137
Cs and 

134
Cs, were traced as far away as Japan (Aoyama, 1988; 

Kasamatsu and Inatomi, 1998). Lauritzen and Mikkelsen (1999) compared measured and 
modelled 

137
Cs activities arising from Chernobyl up to distances of 9000 km from the 

source. A significant increase in radioactivity in the indigenous people of Arctic Norway, 
Sweden and Russia was observed in the few years immediately following the accident 
(UNEP, 2002a). 
 
Another case of accidental atmospheric release of 

137
Cs occurred at a steel mill in 

Algeciras, Spain, in May 1998. This radio-isotope was subsequently detected in air across 
broad areas of Europe (Pobanz et al, 1999; Bysiek et al, 2001; Robertson, 2004). 
 
Radionuclides, in particular 

90
Sr, were also dispersed on a global scale by the atmospheric 

nuclear weapons testing in the 1950s and 1960s (Rehfeld and Heiman, 1995; Dueñas et al, 
2003). 

2.3.2 Lead 

Anthropogenic sources of lead include its use as a petrol/gasoline additive (now phased out 
in the more developed countries), non-ferrous metal production and fossil fuel combustion. 
 
Although lead does have minor natural sources (namely soil dust, volcanoes, forest fires, 
biogenic emissions and sea-salt spray) it has been shown that between 3700 and 5900 
years ago, the atmospheric deposition rate was orders of magnitude lower than in the 
recent decades (Klaminder et al, 2003). It is therefore obvious that atmospheric Pb is today 
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primarily anthropogenic in origin. Furthermore, it has been suggested that, even in ancient 
times, atmospheric LRT dominated deposition in a Swedish bog (Klaminder et al, 2003). 
The analysis of Pb in a Greenland ice core provided evidence for hemispheric pollution by 
lead (Hong et al, 1994). Pollution of the Arctic by Pb over the last few decades has been 
ascribed, by isotope ratio analysis, largely to atmospheric LRT from Eurasian sources, 
especially Eastern Europe (Sturges and Barrie, 1989; Barrie et al, 1992). On the other 
hand, falling concentrations in ice cores in central Greenland in the latter part of the 20

th
 

century have been linked to declining emissions from North American sources (Rosman et 
al, 1993; McConnell et al, 2002). 
 
Atmospheric inputs attributed to anthropogenic emissions from southern hemisphere 
sources have been identified in 20

th
 century Antarctic snow and ice profiles (Rosman et al, 

1994; Vallelonga et al, 2002; Planchon et al, 2003; van de Velde et al, 2005). 
 
It has been suggested that lead deposition in western Ireland may have been largely due to 
atmospheric LRT from North America (Schell et al, 1997). 
 
Steinnes et al (2005a) analysed the origin of Pb deposited in Norway from 1977 to 2000, 
showing that different parts of the country were affected by different source regions 
(western/central Europe, the U.K., Eastern Europe and Russia) and that the relative 
importance of these sources varied over the time period studied. 
 
Interestingly, lead is one of the most ancient anthropogenic pollutants contributing to 
remote pollution through atmospheric LRT. Analysis of “varved” (annually layered) 
sediments in Sweden shows pollution beginning approximately 3000-4000 years ago 
(corresponding to the birth of metallurgy), with a peak in Roman times (about 2000 years 
ago) and a large and permanent Medieval increase (1000 years ago), arising from the 
development of metal production. Subsequently, there was a rapid increase after 1945, with 
a peak in the 1970s followed by the large decline, due to the use and subsequent phase-
out of leaded petrol, (Brännvall et al, 1999, 2001; Renberg et al, 2000, 2002). Similar 
conclusions have been drawn from the study of cores taken from peat bogs in Spain 
(Martínez-Cortizas et al, 1997), Switzerland (Weiss et al, 1997; Shotyk et al, 1998) and 
Norway (Steinnes, 1997, 2005a, 2005b), although the Pb profiles may be influenced by 
local emissions as well as by atmospheric LRT. The history of atmospheric Pb deposition in 
a Swiss peat bog, going back over 12,000 years, has been deciphered by Shotyk et al 
(1998) and commented on by Nriagu (1998). A similar analysis of sources, covering the 
period from 3,000 to 500 years ago, has been provided by Hong et al (1994) from 
observations on Pb in a Greenland ice core. Determinations performed on Antarctic ice 
cores show “natural background” Pb concentrations until the late 19

th
 century (Vallelonga et 

al, 2002). This demonstrates that the forms of Pb emitted from medieval and earlier 
metalworking sources in Europe and the Middle East were not long-lived enough in the 
atmosphere to cross the intertropical convergence zone and reach high southern latitudes. 

2.3.3 Volatile organic halogen compounds 

A number of volatile organohalogens have been mentioned above as being of partly natural 
and partly anthropogenic origin. Others are primarily or solely man-made. These include: 

 chlorofluorocarbons (CFCs); 

 CFC replacement compounds: hydrochlorofluorocarbons (HCFCs) and 
hydrofluorocarbons (HFCs); 

 halons and their substitutes; 

 perfluorocarbons (PFCs); 

 carbon tetrachloride (CCl4); 

 certain chlorinated solvents: methylene chloride (CH2Cl2), trichloroethylene (C2HCl3) 
and perchloroethylene (C2Cl4) (all of which may possibly have significant natural 
sources, although the evidence is not unequivocal: see Khalil et al, 1999; Moore, 2003, 
2004), as well as the purely anthropogenic 1,1,1-trichloroethane (CCl3CH3). 

 
The atmospheric lifetimes of these compounds range from about 5 days for C2HCl3 to 
thousands of years for perfluorocarbons (UNEP, 2002a), so all are liable to undergo LRT, 
as is demonstrated by regular monitoring performed at observation stations worldwide 
(WMO, 2002; Thompson et al, 2004). Nevertheless, only those substances that have 
atmospheric lifetimes greater than about one year will become more or less uniformly 
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distributed throughout the global atmosphere when they are emitted essentially only in the 
northern hemisphere. The shorter-lived compounds are not able to cross the intertropical 
convergence zone that acts as an atmospheric “barrier” close to the equator (Ballschmiter, 
1992). 
 
All these compounds are too volatile and insoluble in water for them to be substantially 
deposited from the atmosphere to ground level. Accordingly, they will in general have no 
direct impact on the biosphere following atmospheric LRT, their concentrations in 
background air being too low to affect vegetation, etc.. However, the parent compounds 
may well contribute to atmospheric impacts, such as stratospheric ozone depletion or 
global warming. Furthermore, their degradation products may be deposited to the 
biosphere. This is the case for the hydrohalic acids arising from most of the compounds 
listed above, while haloacetic acids can be formed in certain cases (e.g. trifluoroacetic acid 
from some HCFCs and HFCs, and trichloroacetic acid as a minor product from C2Cl4). 

2.3.4 Persistent organic pollutants (POPs) / Persistent, bioaccumulative and toxic 
substances (PBTs) / Semi-volatile organic compounds (SVOCs) 

A group of substances that has gained considerable attention in recent years is that of the 
“persistent organic pollutants” (POPs) or “persistent, bioaccumulative and toxic substances” 
(PBTs/PTBs). Definitions vary somewhat from one authority to another, but these terms are 
more or less synonymous and the acronym “POPs/PBTs” will be used henceforth in this 
dossier. Generally speaking, the definition is considered to encompass only substances 
that are deposited to the biosphere, where they may cause toxic effects, so volatile 
compounds such as the CFCs, while being persistent and organic, do not fall within this 
category.  
 
The compounds that have been targeted up to present for action as priority substances in 
the major international regulatory agreements (UNECE and UNEP Conventions), as will be 
discussed later in this dossier, are: 

 Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs), and polycyclic 
aromatic hydrocarbons (PAHs). These substances are not produced intentionally, but 
trace amounts are formed during natural processes and anthropogenic activities 
(combustion, metallurgical operations, etc.); 

 Polychlorinated biphenyls (PCBs) are no longer produced in the developed countries, 
but are still present in existing equipment as transformer fluids, etc.; 

 Certain chlorinated pesticides: aldrin, chlordane, chlordecone, dieldrin, DDT, endrin, 

hexachlorocyclo-hexane isomers (HCHs) including lindane (-HCH), heptachlor, mirex, 
toxaphene (a mixture of chlorinated camphenes) and pentachlorophenol. Most of these 
have been phased out in the developed world but still persist in the environment; 

 Hexachlorobenzene, a by-product formed in the manufacture of certain organic chlorine 
compounds, as well as being used formerly as a pesticide; 

 Hexabromobiphenyl, a fire retardant. 
 
The UNECE and UNEP lists are not definitive: new compounds are likely to be added in the 
future. 
 
Since the substances mentioned above, in addition to being persistent, are in general 
hydrophobic and lipophilic, they tend to bioaccumulate in fatty tissues of living organisms 
from different levels in the food chain. 
 
Many POPs/PBTs have such a low vapour pressure that a significant fraction of the total 
atmospheric concentration is present as material adsorbed on (or absorbed in) aerosol 
particles. Such species are often known as “semi-volatile organic compounds” (SVOCs). 
The partitioning between phases impacts the LRT potential, as will be discussed later in 
this dossier. 
 
Transport to the polar regions 
The persistence of the POPs/PBTs allows them to travel to remote areas of the planet, far 
from known sources. Many studies have focused on contamination of the Arctic, which is 
devoid of significant pollution sources of its own so that POPs/PBTs found there provide a 
convincing demonstration of transport from afar (Gregor and Gummer, 1989; Barrie et al, 
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1992; Macdonald et al, 2000a; AMAP, 1998, 2002, 2004; CACAR, 2003a; Bottenheim et al, 
2004). 
 
Depending on the location of the receptor site and the season, semi-volatile 
organochlorines and PAHs reaching the Arctic may have originated in Europe, Russia, East 
Asia or North America (Pacyna and Oehme, 1988; Halsall et al, 1997, 1998, 2000; Stern et 
al, 1997; Bailey et al, 2000; Macdonald et al, 2000a; CACAR, 2003a; Helm et al, 2004). 
Evidence has been presented that an episode of “brown snow” in the Canadian Arctic was 
due to emissions in China. The organic pollutants deposited included PAHs, PCBs, DDT-
related compounds, toxaphene and the insecticides methoxychlor, endosulfan and HCH 
(Welch et al, 1991). 
 
A number of modern agrochemicals, including trifluralin (short-lived in the atmosphere), 
have been found within the Arctic Circle (Welch et al, 1991; Chernyak et al, 1996; CACAR, 
2003a), while chloroalkyl phosphate flame retardants and chlorobenzenes were identified in 
ice from a glacier in northern Sweden (Laniewski et al, 1998). 
 
Pollution of the Antarctic by a range of organochlorines has also been demonstrated 
(Larsson et al, 1992; Kallenborn et al, 1998; Laniewski et al, 1998; Corsolini et al, 2002; 
Borghini et al, 2005; Dickhut et al, 2005). 
 
Transport to other regions 
The herbicide atrazine is known to be transported through the atmosphere over distances 
of hundreds of kilometres (Thurman and Cromwell, 2000).  
 
On a more regional scale, atrazine and related compounds detected in the pristine Isle 
Royale National Park in Lake Superior were assigned sources in Minnesota, Iowa and 
Wisconsin (Thurman and Cromwell, 2000), while organophosphate pesticides applied in 
California’s Central Valley were shown to be transported to the Sierra Nevada mountains 
(Zabik and Seiber, 1993; Aston and Seiber, 1997). 
 
Transpacific transport from Asia to the North American west coast of a number of 
pesticides (including HCHs, endosulfans, dacthal, chlorothalonil and trifluralin), as well as 
the more volatile PCBs, has been described in several studies (Koziol and Pudykiewicz, 
2001; Wilkening, 2001; Killin et al, 2004; Lichota et al, 2004; Harner et al, 2005).  
 
A number of pesticides that are not authorised for use in Denmark have nevertheless been 
reported by Asman et al (2005) to be present in precipitation there. They are therefore 
assumed to have been transported via air from other countries. 
 
Toxaphene, formerly used as a cotton insecticide in the southern United States, has been 
shown to be transported through the atmosphere to Bermuda, western Canada and the 
Great Lakes (Bidleman and Olney, 1975; Donald et al, 1998; James and Hites, 2002). 
 
PCBs in the air above the eastern Mediterranean, as well as PAHs in marine sediments 
there, have been demonstrated to originate in western and central Europe (Mandalakis and 
Stephanou, 2002; Tsapakis et al, 2003). 
 
The modelled contribution of transboundary transport to air concentrations and deposition 
fluxes, in various European countries and the Arctic, of benzo[a]pyrene, PCDD/Fs, PCBs 

and -HCH is discussed by Shatalov et al (2004). 
 
The observation of the latitudinal dependence of the concentrations in air of a number of 
organochlorine pesticides and related compounds has been used to determine empirical 
“travel distances” for these substances from their points of release at various locations in 
North America. The values range from hundreds to thousands of kilometres (Shen et al, 
2004, 2005). Travel distances of comparable magnitudes were determined for currently 
used pesticides belonging to various chemical families, by analysing the latitudinal 
dependence of their concentrations in North American lakes (Muir et al, 2004). 
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3 Long-Range Transport through media other than the 

atmosphere 

Although the atmospheric pathway is believed to be the dominant one for the LRT of 
chemicals and is the one which has been the subject of the most scientific studies, it is not 
the only one. In this chapter, three other modes of LRT are discussed. 

3.1 Transport by Rivers, Oceans and Drifting Ice 

Some substances may not be prone to atmospheric LRT, but may nevertheless be 
transported over long distances, by rivers and the oceans. This is the case, in particular, for 
compounds that, on account of their high affinity for aqueous phases: 

 are emitted to water and remain there; 

 are emitted initially to air, but subsequently partition to a greater or lesser degree to 
water. 

 
The first of these cases can be illustrated by transport to the Arctic Ocean of artificial 
radionuclides, especially 

137
Cs and 

129
I, discharged into the Irish Sea and the English 

Channel from nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France), 
respectively. The emissions from these two point sources have been well characterised and 
observations of the resulting radioactivity have provided scientists with valuable information 
on ocean circulation. The time-scale for oceanic transport from the U.K. and French plants 
to the Norwegian Sea and to the Arctic Ocean and its marginal seas is of the order of 5 
years (Smith et al, 1990, 1998; Kershaw and Baxter, 1995; CACAR, 2003a; Gao et al, 
2005), compared to only a few days for atmospheric transport from mid-latitudes to the 
Arctic.  
 
For many water-soluble species, including nitrates and dissolved organic matter, the flow 
from the continents to the oceans is primarily due to their transport in groundwater, streams 
and rivers (Wörman, 1998; Kaiser, 2002; Bouwman et al, 2005). Thus, rivers export to the 
oceans about 50 million tons per year of dissolved nitrogen, arising from natural sources as 
well as from agriculture, sewage and industry (Bouwman et al, 2005). Rivers are also a 
prominent source of particulates and sediment to the world’s oceans (Depetris, 2000; 
Syvitski et al, 2005). Nuclear weapon plants located along Siberian rivers have been 
reported to contribute to pollution of the Arctic by radionuclides (Livingston, 1995). 
 
The case of substances initially emitted to air, but subsequently undergoing significant 
oceanic transport, could no doubt be exemplified by highly water-soluble compounds such 
as the inorganic acids HCl and HF. It is indeed reasonable to assume that these species, 
after being removed from the atmosphere by wet deposition, will end up in rivers and the 
oceans, where their concentrations will become evened out by mixing. However, this 
phenomenon would be difficult to demonstrate, on account of the permanent background 
concentrations of the corresponding anions in seawater. It is nevertheless known that 
riverine transport plays a major role in the transport of anthropogenically “fixed” nitrogen 
species (mainly ammonium and nitrate ions) to marine ecosystems (Galloway et al, 1995). 
 
Macdonald et al (2000b) predict that the herbicide atrazine, on account of its high solubility 
and long lifetime in water, will behave much like 

137
Cs in the ocean, i.e. providing a tracer of 

water from drainage basins where it has been applied. 
 
Although polychlorinated hydrocarbons are hydrophobic, some of them have solubilities in 
water great enough for the oceans to play a role in their LRT, even if the atmosphere 
remains the primary vector. That is to say, dissolution in seawater, particularly in the colder 
regions of the planet, can lead to a significant marine burden. The dissolved species can 
then become geographically redistributed in the oceans, while undergoing a continuous 
exchange with the atmosphere. This phenomenon has been discussed, for example, for the 
HCHs, DDTs, PCBs, chlordanes, etc. (Iwata et al, 1993, 1994; Schreitmüller and 
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Ballschmiter, 1994; Macdonald et al, 2000a, 2000b; Koziol and Pudykiewicz, 2001; 
Scheringer and Wania, 2003; CACAR, 2003a). 
 

A large reservoir of -HCH has accumulated in the Arctic Ocean, mainly on account of 
atmospheric transport from lower-latitude regions where the “technical” HCH mixture (of 

which -HCH is the major component) was used as a pesticide in the 1970s and 1980s. 
The accumulated aqueous reservoir will ultimately be shed predominantly through water 
currents and degradation, since extensive ice cover prevents effective exchange with the 

atmosphere, despite the fact that the ocean water is now oversaturated with -HCH relative 
to air (Wania and Mackay, 1999; Wania et al, 1999; Macdonald et al, 2000a, 2000b; 
Scheringer and Wania, 2003; CACAR, 2003a). 
 
Input of PCBs, HCHs and DDTs to the Arctic Ocean via LRT in Russian rivers may have 
been significant in the past and may still be so today (Wania and Mackay, 1999; Macdonald 
et al, 2000a, 2000b; AMAP, 1998, 2002, 2004; CACAR, 2003a). Several large rivers 
flowing through industrialised and agricultural areas drain into the Arctic Ocean. When their 
sediments reach the estuary, they are partially incorporated into sea ice. Ice-borne 
particles, possibly laden with contaminants, may thus be released when the ice melts after 
drifting to other parts of the ocean (AMAP, 1998, 2002, 2004). 
 
However, Gustaffson et al (2005) present evidence showing that drifting ice is not an 
important LRT carrier of POPs to the Arctic marginal ice zone. 

3.2 Transport by migrating animals 

As pointed out by Wania (1998), certain migrating species cover long distances, often 
crossing international boundaries and linking industrialised or agricultural regions with 
remote ones. Furthermore, persistent lipophilic substances can bioaccumulate in animal 
tissues – particularly in those at the top of the food chain – to levels that are orders of 
magnitude greater than in air or water. 
 
Unlike atmospheric LRT, which ultimately leads to deposition over broad expanses of the 
Earth’s surface, transport of contaminants concentrated in animal tissues can potentially 
provide a focused delivery to a given ecosystem. 
 
A preliminary analysis of the significance of LRT by migratory seabirds and whales was 
performed by Wania (1998) for selected POPs/PBTs (HCHs, PCBs and DDTs). From this 
assessment, one may conclude that: 

 Gross transport rates of POPs/PBTs via these animals into a given region are usually 
smaller than the fluxes in air or water, but in some cases may be of a comparable order 
of magnitude; 

 It is more difficult to assess whether or not net transport (e.g. import into the Arctic 
minus export from the Arctic) actually occurs. This depends on the extent to which the 
animals feed, excrete, spawn or die in distinct areas. 

 
One case has received particular attention, namely that of salmon making their end-of-life 
migration from the northern Pacific Ocean to their natal freshwater lakes in Alaska, to 
spawn and die. The decomposing carcasses of the salmon release PCBs, DDTs and other 
POPs/PBTs accumulated over their lifetime, so that the sediments of these lakes and the 
other fish that inhabit them can become contaminated with particularly elevated levels of 
these contaminants (Ewald et al, 1998; Krümmel et al, 2003, 2005; Mu et al, 2004). Indeed, 
the PCB input flux to the lakes by this “biological pump” mechanism can be up to sixfold 
greater than atmospheric deposition (Krümmel et al, 2003). 
 
Salmon have also been shown to be a significant local vector for mercury, in the readily 
bioavailable form of monomethylmercury, to Alaska’s water bodies (Zhang et al, 2001). 
 
It has been hypothesised that deposited seabird guano may influence the levels of PCBs 
and other POPs/PTBs on isolated islands in the Norwegian Arctic (Enge et al, 2001; AMAP, 
2002, 2004; Evenset et al, 2004, 2005) and in the Canadian Arctic (Blais et al, 2005). This 
may also be true for certain radionuclides, but the evidence is equivocal (Dowdall et al, 
2005). 
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3.3 Anthropogenic transport 

When a xenobiotic substance is found in a reputedly pristine environment, one should 
always bear in mind the possibility that it may have reached that location, partially or wholly, 
through “anthropogenic” transport, that is the shipment of goods or hazardous wastes 
(including ocean dumping of the latter), or the displacement of persons, for trade, tourism, 
or other purposes. Even the polar regions have a small resident or temporary population 
(indigenous peoples, military personnel, oil industry workers, scientific researchers, 
explorers, etc.) who may possibly use articles or products containing the substances 
concerned. Local anthropogenic contamination of the Arctic (by airstrips, military 
installations, mining, industry, waste dumps, etc.) has been reviewed by CACAR (2003a). 
Stow et al (2005) have quantified the contribution of Distant Early Warning radar stations to 
local and Arctic-wide contamination by PCBs. 
 
There are regrettably numerous examples of accidental leakage of anthropogenically 
transported substances that have led to significant environmental contamination and 
damage, e.g. from oil tankers, nuclear-powered submarines, etc. Illegal dumping of waste 
materials into the oceans is also still a major concern. 
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4 Mechanisms and modelling of atmospheric Long-Range 

Transport 

4.1 Pathways and timescales 

The atmosphere clearly provides a major vector for the global dispersion of pollutants. The 
pathways followed and the distances covered depend on the physical properties and 
chemical reactivity of the substances considered, as well as on the location and moment 
(season and time of day) of release to the atmosphere and on the prevailing meteorological 
conditions. Compounds that degrade rapidly in the atmosphere will, in general, not travel as 
far as more persistent ones. Substances with very low volatility will tend to adsorb onto 
atmospheric particles, which, depending on their size, may settle rapidly to the ground. 
Hydrophilic pollutants will be removed by precipitation more readily than less soluble ones. 
 
The observational evidence presented in Chapter 2 of this dossier clearly shows that there 
are preferential (albeit to some extent seasonally-dependent) pathways for intercontinental 
atmospheric LRT, e.g. eastwards from Asia to North America and thence to Europe, 
northwards from Eurasia to the Arctic, westwards from northern Africa across the Atlantic, 
south-eastwards from southern Africa to Australia and New Zealand, etc.. 
 
The meteorological phenomena driving these pathways have recently been reviewed by 
Stohl et al (2002a), EMEP (2002), Holloway et al (2003) and Stohl (2004). Various 
individual chapters in the book by Stohl (2004) deal with atmospheric pollutant transport 
between most of the major regions of the world, namely the Arctic (Bottenheim et al, 2004), 
North America (Cooper and Parrish, 2004), Europe (Huntrieser and Schlager, 2004), East 
Asia (Pochanart et al, 2004), Southern Asia (Lawrence, 2004) and Africa (Piketh and 
Walton, 2004). 
 
The preferential pathways for atmospheric LRT in the northern hemisphere are illustrated 
schematically in Figure 1 (adapted from Stohl, 2004). 
 
Further reviews of the pathways by which pollutants are transported through the 
atmosphere specifically into the Arctic region are provided by Barrie et al (1992), Mackay 
and Wania (1995a), Iversen (1996), AMAP (1998, 2004), CACAR (2003a) and Macdonald 
et al (2000a, 2005). The effect of the North Atlantic Oscillation (NAO) on air pollutant 
transport into the Arctic has been discussed by Eckhardt et al (2003), MacLeod et al (2005) 
and Hermanson et al (2005). The NAO, the intensity of which is determined by the 
difference between the subtropical high pressure and the polar low pressure regions, is the 
dominant driver of climate variability over the North Atlantic.  
 
For the express purpose of assessing the ability of various models to represent 
atmospheric dispersion and transport pathways, inert synthetic tracer gases have been 
released to the atmosphere in small quantities. For instance, perfluoromethylcyclohexane 
was released in 1994 from a location in northwestern France and tracked at 168 sampling 
locations in 17 countries across Europe (Nodop et al, 1998; Stohl et al, 1998; Warner et al, 
2004, 2005). Similar experiments had previously been conducted in North America 
(Draxler, 1991; Sykes et al, 1993; Stohl et al, 1998; Draxler and Hess, 1998). The 
monitoring of “tracers of opportunity” resulting from deliberate or accidental releases of 
substances such as radionuclides, has also been used for model validation. 
 
Intercontinental transport occurs on time-scales of about 3-30 days (Sturman et al, 1997; 
Stohl et al, 2002a) and is thus relevant for compounds having a lifetime of at least 3 days 
(corresponding to a half-life of 2 days: see Chapter 7 below). This includes substances 
such as ozone and many of its precursors, certain aerosols, mercury and POPs/PBTs 
(Stohl et al, 2002a), as well as a range of volatile organic halogen compounds, as 
discussed above. Under exceptional meteorological circumstances, “intercontinental 
pollution express highways” may arise, leading (for example) to transport across the 
Atlantic in as little as one day (Stohl et al, 2003a). 



 
24 

Summer 

 
 
Winter 

 

Figure 1: Grey arrows depict transport in the lower troposphere (below 3km), while black 
arrows refer to the middle and upper troposphere (above 3km). 

 
Air quality at a given location can be influenced by emissions from another continent either 
through an increase in the more or less ubiquitous hemispheric background levels of 
pollution, or through discrete episodic flows of enhanced pollutant levels. The contributions 
from the latter events depend on location, season and the substance considered. 
Intercontinental transport episodes may involve either (a) advection more or less 
horizontally within the planetary boundary layer; or (b) lifting into the free troposphere via 
deep convection, “orographic effects” (i.e. the influence of mountain slopes on air flow) or, 
in particular, large-scale weather systems, especially the uplifting “warm conveyor belts” 
that occur ahead of advancing cold fronts. The relative importance of these phenomena 
differ from region to region and from substance to substance (EMEP, 2002; Stohl et al, 
2002a; Holloway et al, 2003; Stohl, 2004). 
 
The distance over which LRT occurs thus depends greatly on meteorological conditions 
(wind speed, precipitation and the orographic and frontal effects mentioned above) as well 
as on the properties of the substance itself (reactivity, solubility and volatility). Pollutants 
transported in the free troposphere will typically be carried further and faster than those in 
the boundary layer, owing to stronger winds and fewer loss mechanisms (Holloway et al, 
2003). 
 
From Asia to North America and from North America to Europe, transport in the free 
troposphere appears to be more important than advection in the boundary layer. Between 
Europe and Asia, boundary-layer transport and orographic lifting may be dominant (EMEP, 
2002). 

4.2 “Global fractionation” and the “grasshopper effect” 

Rappe (1974) suggested that pesticides “when used in warm climates, become evaporated 
and transported to cool areas where they will be condensed”. Goldberg (1975) coined the 
term “global distillation” to describe the process whereby a compound could volatilise from 
warmer regions, undergo long-range atmospheric transport and subsequently “recondense” 
in colder areas at higher latitudes. Ottar (1981) postulated “a systematic transfer of the 
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more persistent [organochlorine] compounds from warmer to colder regions”, leading 
eventually “to an accumulation of these substances in the temperate and Arctic regions”. 
 
Wania and Mackay (1993a) suggested that, through “global distillation”, organic 
compounds could become latitudinally fractionated, “condensing” at different temperatures 
according to their volatility, so that compounds with vapour pressures in a certain low range 
might accumulate preferentially in polar regions. 
 
It should be emphasised that even organic pollutants with very low volatilities do not 
actually condense – even at the lowest environmental temperatures – in the sense that the 
atmosphere becomes saturated or supersaturated. Indeed, atmospheric partial pressures 
are always below the vapour pressures. Rather, cold conditions favour partitioning from air 
to a non-gaseous phase, which is the meaning of the term “cold condensation” as used by 
Wania and Mackay (1993a). 
 
Wania and Mackay (1996) and Wania (1999) analysed the factors involved in global 
fractionation. Firstly, cool temperatures favour greater adsorption to atmospheric particulate 
matter, which is then deposited to the Earth’s surface. Secondly, natural decomposition 
also slows down in the cold, making pollutants more persistent. Thirdly, low temperatures 
reduce the rates of evaporation of contaminants from water and promote their partitioning 
from the atmosphere to the surface soil or vegetation. 
 
According to Wania and Mackay (1996), the global distribution of organic pollutants will 
depend largely on their vapour pressure (or their octanol-air partition coefficient) and the 
ambient temperature. 
 
The migration of semi-volatile compounds to higher latitudes, in a series of cycles of 
atmospheric transport, deposition and re-volatilisation, in tune with seasonal temperature 
changes, has come to be known as the “grasshopper effect” (Wania and Mackay, 1996). 
 
The concept of “global fractionation” and observational evidence for it were critically 
analysed by Ockenden and Jones (1999). More recent evidence for the “grasshopper 
effect” has been reviewed by Gouin et al (2004). Some of the environmental models to be 
discussed below enable one to calculate the number of “hops” between mobile and non-
mobile media that are associated with a given journey from warm to cold regions (e.g. 
Semeena and Lammel, 2003, 2005; Leip and Lammel, 2004). 
 
A number of different environmental matrices have been analysed as a function of latitude, 
in order to provide evidence for the global fractionation theory, including air (Iwata et al, 
1993; Ockenden et al, 1998a; Agrell et al, 1999; Meijer et al, 2003a), river water (Iwata et 
al, 1994), seawater (Iwata et al, 1993; Wania and Mackay, 1996), soil (Lead et al, 1997; 
Meijer et al, 2002, 2003b; Ockenden et al, 2003), sediments (Iwata et al, 1994; Muir et al, 
1996), tree bark (Simonich and Hites, 1995), various plants (Calamari et al, 1991; 
Ockenden et al, 1998b) and frogs (ter Schure et al, 2002). 
 
In a similar manner to the temperature-driven latitudinal distribution of semi-volatile 
compounds, concentration gradients have been observed in mountainous areas as a 
function of altitude (for reviews, see Fernández and Grimalt, 2003; Daly and Wania, 2005). 
 
In connection with the temperature-dependent partitioning between mobile and non-mobile 
media, Ockenden et al (2003) have shown that the forested soils of the northern 
hemisphere, and other carbon-rich soils, appear to be playing an important role in 
“protecting” the Arctic from LRT of PCBs (for example) through their absorptive capacity for 
these compounds. Thus, in the 70 years since PCBs were first produced, only a very small 
fraction of the total inventory has travelled from the populated source regions to the Arctic, 
mainly on account of retention by soils (Ockenden et al, 2003). Vegetation may have a 
similar effect, but its role is complex (Dalla Valle et al, 2004). 

4.3 Atmospheric transport of substances of marine origin via sea-salt 
aerosols 

Certain natural substances and anthropogenic pollutants present in the oceans, especially 
those with surfactant properties, become concentrated in the sea-surface microlayer, 
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having been brought to the surface by the scavenging action of ascending air micro-
bubbles entrained underwater by breaking waves or falling rain. The marine aerosols that 
are formed when the air bubbles burst may be highly enriched in surfactants and other 
substances (e.g. certain metal ions) that interact with them, as well as microorganisms 
(Marty et al, 1979; Hardy, 1982; Blanchard, 1989; Tseng et al, 1992; Skop et al, 1994; 
GESAMP, 1995; Stefan and Szeri, 1999; Oppo et al, 1999; Grammatika and Zimmerman, 
2001; Mochida et al, 2002; Saint-Louis and Pelletier, 2004). This phenomenon provides a 
mechanism for efficient sea-to-air transfer even for certain substances with low volatility 
and high water solubility, potentially enabling their LRT via the atmosphere (Cini and Loglio, 
1997). 

4.4 Relationship between long-range transport and persistence 

LRT is clearly related to persistence in the environment, since time is required for transport. 
A long-lived chemical will travel further than a more reactive one with similar physico-
chemical properties other than persistence. However, the propensity for LRT cannot be 
predicted from persistence alone. Even highly persistent chemicals will not undergo 
atmospheric LRT if their volatility is very low and/or their aqueous solubility is high. 
Furthermore, the societal concerns related to persistence and LRT are fundamentally 
different: persistent chemicals may adversely affect future generations, while those 
undergoing LRT are liable to contaminate areas where they have not been used (van de 
Meent et al, 2000). 

4.5 Models 

A huge number of numerical models, covering a wide range of complexity, have been 
developed for predicting how chemicals are transported, distributed and degraded in the 
various compartments of the environment. It is beyond the scope of this dossier to attempt 
to discuss or even list them all. Some useful overviews have been provided by AMAP 
(1998, Chapter 3), Mackay et al (2001), Gouin et al (2001), Scheringer and Wania (2003), 
Schultz and Bey (2004) and OECD (2004). 
 
It is important to recognise that POP/PBT-type compounds – on which this chapter on 
modelling is focused – are “multimedia” chemicals. That is to say they are liable to be 
present simultaneously in the various environmental media or compartments, such as air 
and the particles it contains, surface and ocean water, soil, sediments and vegetation, and 
they cycle between these different media. Any model used for describing the environmental 
behaviour of POPs/PBTs, including their potential for LRT, must therefore take into account 
intermedia exchange as well as transport and degradation in the various compartments. 
 
Regional, hemispheric or global 3-dimensional chemistry-transport “general circulation” 
models (GCMs), with high spatial resolution and carefully validated by observations, are 
perhaps the only adequate tools for satisfactorily describing how emissions at one location 
may affect another location thousands of kilometres away. Such “dispersion” models, 
initially developed for other classes of substances, have been applied to POP/PBT-type 
compounds by Jacobs and van Pul (1996), van Jaarsveld et al (1997), Lammel et al 
(2001a, 2001b), Semeena and Lammel (2003), Leip and Lammel (2004), Koziol and 
Pudykiewicz (2001), Malanichev et al (2002, 2004), Ma et al (2003, 2004), Hansen et al 
(2004) and Suzuki et al (2004). 
 
However, less computationally-demanding multimedia compartment-based models (or 
“box” models), with a lower spatial resolution, are very useful tools for screening and 
ranking purposes. They are based on the fugacity modelling concept originally developed 
by Mackay and coworkers in their suite of zero-dimensional CEMC Level I, II, III and IV 
models (for an overview, see Mackay, 2001). This concept has been adapted and in some 
cases extended, leading to a series of models, many of which are spatially resolved: EQC 
(Mackay et al, 1996), the Bergen model (Strand and Hov, 1996), GloboPOP (Wania and 
Mackay, 1993a, 1993b, 1995, 1996, 1999, 2000a; Wania, 2003), CoZMo-POP (Wania et al, 
2000), CalTOX (McKone and Enoch, 2002), SimpleBox (van de Meent, 1993; Brandes et 
al, 1996), EUSES (derived from SimpleBox and adopted for European Union risk 
assessment purposes, see Vermeire et al, 1997 and http://ecb.jrc.it/), ChemRange 
(Scheringer, 1996, 1997, 2002; Scheringer et al, 2004a, 2004b), CliMoChem (Scheringer et 
al, 2000, 2004a), ELPOS (http://www.usf.uos.de/projects/elpos/; Beyer and Matthies, 

http://ecb.jrc.it/
http://www.usf.uos.de/projects/elpos/
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2001), TaPL3 (http://www.trentu.ca/cemc/models/TP300.html; Beyer et al, 2000), BETR 
(MacLeod et al, 2001; Woodfine et al, 2001; Prevedouros et al, 2004; Toose et al, 2004), 
IMPACT 2002 (Pennington et al, 2005); and others. 
 
The following sections focus on (a) the modelling studies performed in order to define the 
LRT potential of chemicals (especially POPs/PBTs) released to the atmosphere; and (b) 
source-receptor relationships. 

4.6 Long-range transport potential 

Many of the international regulatory agreements on the abatement of transboundary 
pollution explicitly include the potential for LRT as one of the criteria to be taken into 
consideration for control of a given chemical (see Chapters 6 and 7 below). However, none 
of the agreements currently provide a definition according to which the LRT potential itself 
can be expressed in numerical terms. Nevertheless, in support of possible future regulatory 
action, a number of groups of scientists have applied mathematical models to derive 
quantitative measures of the LRT potential (LRTP).  
 
The development of the LRTP concept has been carried out mainly using multimedia 
compartment-based models in the hypothetical “evaluative” mode. The intention in this 
case is not to describe three-dimensional transport referenced to actual geographical 
coordinates and adopting realistic scenarios for emissions from defined locations. The 
models are merely used to explore in a generic way how the LRTP depends on substance 
properties, environmental properties, mode of entry into the environment, etc., and to assist 
substance evaluation, for instance by providing rankings of different compounds. 
 
The LRTP has been expressed by different authors in terms of “spatial range (SR)” 
(Scheringer and coworkers), “characteristic travel distance (CTD)” (McKone, Matthies and 
coworkers), or similar descriptors. For overviews of these somewhat differing concepts, see 
Scheringer et al, 2001; Mackay et al, 2001; Scheringer and Wania, 2003. 
 
The early work on LRTPs was reviewed by van de Meent et al (2000), who discussed three 
alternative derivations, based on the following approaches: 
 
1. The “mixed compartment” approach:  A multimedia box model is used to simulate a 

steady-state open system, in which the compartments are all well-mixed and the size of 
the system is just great enough for overall transformation flux of the compound in the 
various media to be equal to its advection flux out of the atmospheric compartment, 
each of these terms representing 50 % of the input into the system (see Figure 2). 
According to this approach, the characteristic scale or characteristic travel distance 

(CTD) is given by L = uA..FA (van de Meent et al, 2000; Beyer et al, 2000), where uA is 

the air compartment advection velocity (i.e. wind speed),  is the overall multimedia 
lifetime or persistence (as defined by Bennett et al, 1999) and FA is the fraction of the 
chemical present in the air compartment. The EQC model may be used for such 
calculations (Beyer et al, 2000); 

 

 

Figure 2: Schematic representation of an open multimedia box model proposed for calculating 
the “characteristic scale” as a measure of LRT potential (from van de Meent et al, 2000) 

 
 

http://www.trentu.ca/cemc/models/TP300.html
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2. The “Lagrangian” approach:  The travel distance of a parcel of a mobile compartment 
(air or water) is calculated, such that a specified percentage of the initial amount of a 
compound in that moving cell is lost as the result of transformation and intermedia 
transport. This calculation is performed using a “Lagrangian” model (i.e. one in which 
composition changes are described relative to the moving fluid parcel, as opposed to 
the “Eulerian” approach of the box models, in which the coordinates are fixed in space). 
This Lagrangian approach considers the movement of a compound driven by advective 
flow (e.g. in air) over a non-mobile phase such as soil or vegetation. During transport, 
the concentration in the moving phase decreases as a consequence of transformation 
in each compartment and intermedia mass exchange. At steady state, there is a unique 
distance from the emission source at which the concentration has fallen to 37 % (1/e) 
of its initial value. This is the characteristic travel distance (Bennett et al, 1998) or 
travelling distance (van Pul et al, 1998), as illustrated in Figure 3. The basic 
assumptions involved are listed by van de Meent et al (2000); 

 

 

Figure 3: The concept of characteristic travel distance in the Lagrangian approach (from van 
de Meent et al, 2000) 

 
3. The “Eulerian multi-box” approach:  In the ChemRange model (Scheringer, 1996, 1997, 

2002; Scheringer and Wania, 2003; Scheringer et al, 2004a), the Earth is divided into a 
one-dimensional loop of interconnected 3-compartment latitudinal zones that exchange 
air and ocean water via dispersive eddy diffusion (rather than advection as in the two 
previous approaches), as illustrated in Figure 4. A chemical is released to one of the 
zones and the substance undergoes transport (driven by the concentration gradient), 
degradation and partitioning. The spatial range (SR) of the compound is defined as the 
distance that incorporates 95 % of area under the curve representing concentration as 
a function of distance from the source. The calculation can be performed for pulse or 
steady-state releases of chemicals. A more realistic geometry, in which the Earth is 
represented by a variable number of interconnected, well-mixed latitudinal zones 
(CliMoChem model, see Figure 5), was later proposed by Scheringer et al (2000). 

 

 

Figure 4: Geometry of the Eulerian multi-box ChemRange model used by Scheringer and 
coworkers (from van de Meent et al, 2000) 
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Figure 5: Geometry of the Eulerian multi-box CliMoChem model used by Scheringer and 
coworkers (from Scheringer et al, 2000) 

 
More recent work on the development of the concept of LRT potentials and the models 
used for deriving is presented in the following studies: 

 The TaPL3 model has been developed specifically for calculating overall persistence 
and LRTP. It is based on the EQC model, but has no advective loss terms. It leads to 
an expression for the characteristic travel distance identical to that of approach 1 above 
(Beyer et al, 2000); 

 Beyer et al (2000) introduced the concept of “stickiness”, i.e. the fraction of a substance 
that will partition into a non-mobile medium such as soil or vegetation and hence retard 
transport. Sweetman et al (2005) also investigated the impact of adsorption to soil on 
characteristic travel distance; 

 Wania and Mackay (2000b) compared atmospheric travel distances calculated using 
various models. Although the absolute values obtained varied substantially from model 
to model, the relative rankings were similar. This led the authors to suggest the use of a 
benchmark substance, with the transport criterion being expressed in the following 
terms “A chemical shall be considered as having the potential for atmospheric long-
range transport if its calculated transport distance/spatial range in a typical regional 
level III [i.e. open, steady-state] multimedia model exceeds that of chemical X 
calculated under the same conditions”. Wania and Mackay (2000b) also emphasised 
the fact that the LRTP depends on the mode of entry into the environment, i.e. the 
compartment into which the compound is emitted, as previously demonstrated for 
overall persistence (Webster et al, 1998). For instance, a substance deposited on to 
soil will be transported less readily through air than the same substance emitted directly 
to the atmosphere; 

 Other comparisons of models, and of the concepts of CTD and SR, were provided by 
Bennett et al (2001), Beyer et al (2001), Wania and Dugani (2003) and Stroebe et al 
(2004); 

 Beyer and Matthies (2001) investigated the effect of combined transport in air and 
water on the CTD; 

 Pennington (2001) presented a tiered methodology for deriving atmospheric travel 
distances, for screening purposes, using a minimum of environmental degradation 
data; 

 Wania (2003) extended the LRTP concept by introducing “immediate and long-term 
Arctic Contamination Potentials” (ACPs), defined as the fractions of the total amount of 
a chemical present in surface media that reside in the Arctic after 1 or 10 years of 
steady emissions with a generic global distribution. Wania (2003) showed how the 
calculated ACPs depend on substance properties by plotting them in a 2-dimensional 
“space”, the axes of which are the logarithms of the octanol-air and air-water partition 
coefficients (the latter being the adimensional Henry’s Law constant); 

 Beyer et al (2003) investigated how temperature influenced CTD by modifying 
degradation rates and partitioning; 

 Scheringer et al (2004b) showed that inclusion of export to the deep sea with settling 
particles could considerably reduce the SRs of highly hydrophobic chemicals, 
calculated using the ChemRange model (see also Dachs et al, 2002); 

 Leip and Lammel (2004) investigated various LRTP indicators using a global, dynamic 
(non steady-state), geo-referenced, multi-compartment chemistry-transport model with 
high spatial and temporal resolution. The authors demonstrated that the absolute 
values of LRTP and even the substance-to-substance rankings varied greatly not only 
with the geographical direction considered (N-S or W-E), but also with the location of 
release on the Earth’s surface; 
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 Breivik et al (2004) used the CoZMo-POP model to show that seasonally varying 
environmental conditions (temperature, precipitation and atmospheric hydroxyl radical 
concentration) can cause the CTD to vary by a factor of ten or more over the course of 
a year. This corroborates the conclusion of Franklin et al (2000), namely that in winter 
months at mid to high latitudes, the hydroxyl concentration is so low that the vast 
majority of organic compounds have atmospheric half-lives greater than 2 days, a cut-
off value proposed by several regulatory bodies as a criterion for determining 
propensity for LRT (see Chapter 7 below). Observational evidence provided by 
Hermanson et al (2005) also points to the effect of low reactivity in polar regions. A 
number of pesticides in current use having “global mean” atmospheric lifetimes of only 
hours are, nevertheless, found in an ice-core from the Norwegian Arctic. Their LRT 
from source regions is explained by low atmospheric OH concentrations and 
consequently enhanced persistence during winter months;  

 Wania et al (2004) provided a useful analysis of the limitations and shortcomings of 
multimedia fate and transport models for predicting partitioning and LRTP of chemicals, 
particularly those that are very soluble in water and those that sorb strongly to 
atmospheric particles;  

 Liu et al (2005) defined “transpacific transport potentials” as a function of the region of 
emission in Asia and atmospheric lifetime of the substance considered; 

 As already mentioned above, empirical travel distances have been derived from 
observations on the latitudinal dependence of various families of chemicals in air (Shen 
et al, 2004, 2005) and water (Muir et al, 2004). The values obtained were compared to 
those calculated using various models; 

 To address the need for critically examining the various existing models for determining 
persistence and LRTP, the OECD established an expert working group to assess their 
reliability and applicability (OECD, 2002, 2004). A recent paper (Fenner et al, 2005) by 
this group provides a comparison of nine models, using a set of 3175 hypothetical 
chemicals exhibiting a broad range of physico-chemical properties. It was concluded 
from this exercise that the rankings of persistence and LRTP are highly correlated 
among the models and are largely determined by the substance properties; 

 Recently, Mackay (2005) has introduced the concept of “distant residence time (DRT)” 
as an indicator of LRTP. In a multi-box environmental model, the DRT is the 
proportionality constant at steady state between the inventory in a distant box and the 
discharge rate into the box where the compound is released. 

4.7 Source-receptor relationships 

Certain atmospheric models have been developed for the express purpose of exploring so-
called “source-receptor” relationships. Such modelling is described as “receptor-oriented” if 
it is focused on the point of impact or, in other words, if it attempts to answer the question 
“At a given location, where do the pollutants come from?”  On the other hand, modelling is 
regarded as “source-oriented” if it tracks contaminants away from a given source and aims 
at answering the question “Which downwind locations will be affected by these emissions?”  
Both questions are important yet sensitive ones, since they may have liability implications. 
 
The receptor-oriented and source-oriented approaches involve establishing trajectories 
backwards to the source, or forwards from the emission point, respectively. Forward 
trajectories indicate where an air parcel will go, while backward trajectories describe where 
it came from. The impact at the receptor site may be expressed in terms of pollutant 
concentrations or deposition fluxes. 
 
Trajectory models, which describe the paths taken by air parcels, are generally Lagrangian 
in nature since they are then computationally less demanding than purely Eulerian ones 
(Stohl, 1998; Seibert and Frank, 2004). However the hybrid Lagrangian-Eulerian model 
HYSPLIT (Draxler and Hess, 1998) has gained great popularity for studying source-
receptor relationships, along with the Lagrangian models ATMOS (Arndt and Carmichael, 
1995; Arndt et al, 1997, 1998), FLEXPART (Stohl et al; 1998, 2002b, 2003b; Stohl and 
Thompson, 1999) and STILT (Lin et al, 2003). 
 
A detailed discussion of source-receptor relationships is beyond the scope of this dossier. A 
few illustrative, but far from comprehensive, examples of their use are nevertheless given 
below: 
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 Using HYSPLIT, Commoner et al (2000) estimated the amounts of PCDD/Fs – emitted 
by 44000 sources – that are deposited in several communities of the Canadian High 
Arctic. The authors concluded that a fairly limited number of North American sources 
are responsible for almost all of the PCDD/Fs deposited on the territory of Nunavut; 

 Cohen (2001) similarly assessed the origins of PCDD/Fs deposited in the Great Lakes; 

 Han et al (2005) used HYSPLIT to trace the origin of atmospheric reactive gaseous 
mercury at rural locations in New York State. Coal-fired power plants and mining and 
smelting operations in the eastern USA and Canada were implicated; 

 Arndt et al (1998) used the ATMOS model to determine the source-receptor 
relationships for sulphur deposition in various Asian countries; 

 Astitha et al (2005) described a methodology for identifying the origin of air pollutants 
observed at a remote location in the Eastern Mediterranean; 

 FLEXPART has been used extensively by Stohl and coworkers to characterise the 
origins of intercontinentally-transported biomass burning emissions, ozone and its 
precursors (Stohl, 1998, 2004; Stohl and Thompson, 1999; Stohl and Trickl, 1999; 
Stohl et al, 1998, 2002a, 2002b, 2003b, 2005; Damoah et al, 2004; Forster et al, 2001; 
Huntrieser et al, 2005; Trickl et al, 2003; Wenig et al, 2003); 

 On the EMEP website (http://www.emep.int/SR_data/sr.html) one can find data, 
derived using the EMEP Eulerian model (Simpson et al, 2003b), on the contributions of 
various European countries to pollution by sulphur and nitrogen species, ozone and 
particulates in neighbouring countries. Similar data are also available for heavy metals 
and POPs/PBTs (http://www.emep.int/index_pollutants.html). The methodology used is 
discussed by Tarrasón et al (2003); 

 Hopke and coworkers have contributed extensively to the application of statistical 
methods for the quantitative apportionment of air pollutants to their sources (e.g. Hopke 
et al, 1993, 2005; Begum et al, 2005). A complete bibliography can be found at 
http://people.clarkson.edu/~hopkepk/project1.html. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.emep.int/SR_data/sr.html
http://www.emep.int/index_pollutants.html
http://people.clarkson.edu/~hopkepk/project1.html
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5 Potential impacts of Long-Range Transport 

The potential impacts of LRT will not be analysed in any depth in the present dossier. The 
most significant effects will merely be listed, so as to illustrate the concerns that have led to 
the enacting of national and international regulations aimed at minimising the 
consequences of LRT. More detailed overviews of impacts can be found elsewhere (e.g. 
Ritter et al, 1995; WHO, 2000; CACAR, 2003b). 

5.1 Human Health Impacts 

5.1.1 Inhaled pollutants 

Certain air pollutants – namely those that are inhaled – can lead to human health effects 
even without being deposited to the biosphere. The World Health Organization (WHO, 
2000) lists four “classical” air pollutants: nitrogen dioxide, ozone, suspended particulate 
matter (particularly the finer fraction with a diameter less than 2.5 µm) and sulphur dioxide. 
As discussed above, all these substances may undergo atmospheric LRT. Furthermore, all 
can contribute to or aggravate respiratory ailments, particularly in sensitive subjects such 
as asthmatics, children or the elderly (Lübkert-Alcamo and Krzyzanowski, 1995; WHO, 
2000; NARSTO, 2000; IAQAB, 2002; USEPA, 2004; EEA, 2004). 
 
While the concentrations of the pollutants are not necessarily high enough to cause 
significant harm to human health following LRT over distances of hundreds or thousands of 
kilometres, there are nevertheless instances when this may occur, especially for ozone and 
particles. When this is the case, fears are understandably raised that emissions in faraway 
places may cause the pollution control strategies and efforts of other nations or region to 
fall short of attaining local air quality objectives. 

5.1.2 Ingested pollutants 

Humans may also be adversely affected by pollutants arising from distant sources and 
ingested with drinking water or foodstuffs, for example as a result of LRT through the 
atmosphere and deposition onto soil, pastures, crops or water bodies, followed – in some 
cases – by biomagnification up the food chain, ultimately leading to high levels in fish, meat 
or dairy products. 
 
Examples of particular concern include: 

 Toxic metals: After deposition from the atmosphere, inorganic mercury can be 
converted by environmental microorganisms to the highly potent neurotoxin 
monomethylmercury, the concentration of which is biomagnified with increasing trophic 
level up the food chain (ATSDR, 1999a; UNEP, 2002b; CACAR, 2003b). Other toxic 
metals of special concern are lead and cadmium (ATSDR, 1999b, 1999c; CACAR, 
2003b); 

 Radionuclides:  For instance, the potential global impact of the 1986 nuclear accident in 
Chernobyl (Ukraine) was assessed by Anspaugh et al (1988) and a slightly increased 
cancer incidence in northern Sweden has recently been linked to this accident (Tondel 
et al, 2004); 

 POPs/PBTs: Most of the semi-volatile organic compounds discussed above are 
lipophilic in nature, especially the PCDDs, PCDFs, PCBs and chlorinated pesticides, 
including DDT and HCH. They tend to concentrate in the fatty tissues of living 
organisms and biomagnify from one species to the next up the food chain. Subsequent 
human dietary exposure to low levels of certain POPs/PBTs may be associated with a 
wide range of adverse effects, including endocrine disruption, immune dysfunction, 
neurological deficits, reproductive and developmental anomalies, behavioural 
abnormalities and carcinogenesis (Ritter et al, 1995; CACAR, 2003b). 

 
Much attention has been paid to the impact of bioaccumulating substances on the native 
populations of the Arctic region, in response to concerns about the elevated concentrations 
of these contaminants in fish and wildlife species that are important components of the 
traditional diets of northern aboriginal peoples (CACAR, 2003a, 2003b). 
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5.1.3 Indirect impacts 

“Indirect” effects on human health may result from the impact of persistent chemicals on the 
environment (to be outlined below). For instance, depletion of the stratospheric ozone layer 
leads to an enhanced flux of solar ultraviolet radiation at the earth’s surface, which in turn 
can cause an increased incidence of skin cancer, cataracts, immune disorders, etc. (UNEP, 
2003). Climate change, believed to be induced at least partially by anthropogenic chemicals 
(particularly CO2, CH4, N2O and CFCs), globally dispersed in the atmosphere, can lead to a 
range of human health impacts, too numerous to even list here (IPCC, 2001a; EEA, 2004; 
Parmesan and Galbraith, 2004). 

5.2 Environmental Impacts 

5.2.1 Stratospheric ozone depletion 

Volatile organic chlorine and bromine compounds that are emitted in substantial quantities 
and that have atmospheric persistence greater than about 1 year, contribute to depletion of 
the stratospheric ozone layer (WMO, 2002). Of particular concern in this respect are the 
CFCs, the halons, carbon tetrachloride, 1,1,1-trichloroethane and methyl bromide. 

5.2.2 Climate forcing 

The so-called “anthropogenic greenhouse gases” perturb the radiative balance between the 
solar visible and ultraviolet radiation reaching the earth’s surface and the infrared energy 
radiated back to space. It is believed that the resulting “radiative forcing” leads to an 
increase in the average temperature at ground level and consequently to a whole host of 
climate-related impacts (IPCC, 2001a, 2001b). The most important greenhouse gases are 
the long-lived (and hence globally dispersed) compounds CO2, CH4, N2O and the CFCs. 
 
The climate forcing due to aerosols (sulphate, carbonaceous, dust, etc.) is complex and 
insufficiently characterised. Particles exert both a direct effect by scattering and absorbing 
solar and infrared radiation and an indirect effect by altering cloud formation processes. 
Overall, aerosols are probably responsible for a significant cooling effect, although black 
carbon is an important warming component (IPCC, 2001b, Chapter 5). 
 
The numerous potential impacts of climate change on ecosystems are discussed in various 
recent reviews (IPCC, 2001a; EEA, 2004; Parmesan and Galbraith, 2004). 

5.2.3 Tropospheric ozone formation – Photochemical smog 

The formation of ozone and related oxidants in the troposphere by a complex suite of 
reactions involving CO and short-lived organic species, nitrogen oxides and sunlight, is a 
well known phenomenon, especially in densely populated areas in summer (NARSTO, 
2000; USEPA, 2004, EEA, 2004). 
 
However, in addition to this urban “photochemical smog” or “summer smog”, the 
background levels of ozone in the remotest areas of the world have been rising inexorably 
for over a century, on account of LRT of ozone itself or its precursors, so that “global smog” 
is now becoming a concern (Hough and Derwent, 1990; Fishman et al, 1996; Levy et al, 
1997; Wang and Jacob, 1998; Berntsen et al, 2000; IPCC, 2001b, Chapter 6; UNECE, 
2003). It has been concluded that intercontinental transport of pollution can at least partially 
negate the results of local efforts to reduce critical exposure levels of ozone (Langmann et 
al, 2003; UNECE, 2003; Keating et al, 2004).  
 
In addition to human health impacts, ozone is believed to contribute to adverse effects on 
vegetation, such as forest dieback and reduction in crop yields (NARSTO, 2000; USEPA, 
2004; Giles, 2005a). In particular, the Mediterranean region has high ozone concentrations 
in summer (Millán et al, 1997), close to levels at which adverse effects on vegetation are 
observed (Fumagalli et al, 2001). Furthermore, ozone is a significant greenhouse gas 
(Berntsen et al, 2000; IPCC, 2001b, Chapter 6). 

5.2.4 Acidification / Eutrophication 

The increase in the acidity of precipitation, surface waters and soils, arising from 
anthropogenic emissions of NO and SO2, which are subsequently transformed into nitric 
and sulphuric acids, is well documented (Cowling, 1982; Galloway, 1995, 2001; Bouwman 
et al, 2002). In recent years, the atmospheric emission rates of these two gases have 
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exceeded natural rates by about 8 and 4 times, respectively (Galloway, 2001). Particularly 
noteworthy effects of increased acidity on ecosystems are mortality of aquatic biota and 
forest dieback (Nosengo, 2003; Galloway et al, 2004; Giles, 2005b). Significant damage to 
forests in Europe became a high-priority environmental issue around 1980, while lakes and 
rivers in Scandinavia lost fish populations due to acidification from the 1950s to the 1980s 
(Cowling, 1982; Matzner and Murach, 1995; UNEP, 2002a; Wright et al, 2005). However, 
SO2 emissions have passed their peak values in all the major regions of the world and have 
been reduced very significantly in Europe and North America (Jeffries et al, 2003; Stern, 
2005; Wright et al, 2005), leading to a decrease in acidity of precipitation and surface-water 
(Ruoho-Airola et al, 2004; Fowler et al, 2005; Skjelkvåle et al, 2005). 
 
It should be noted that ammonia, which also undergoes atmospheric LRT, is another cause 
for concern. Although it is alkaline, when deposited to terrestrial ecosystems it can be 
converted to nitrate and exert an acidifying effect on soils and groundwaters. In some 
areas, soil acidification from nitrification of ammonia deposited from the atmosphere may 
be comparable to that from deposition of nitric acid (Galloway, 1995). 
 
Non-biological impacts of atmospheric acidity are corrosion of metals and stone, the latter 
involving deterioration of mankind’s long-term cultural heritage (Kucera and Fitz, 1995). 
 
Cowling (1982) provides a detailed historical review on acid precipitation, from the 17

th
 

century to 1982, documenting in particular the rise of awareness in the 1960s and 1970s of 
the environmental consequences of this phenomenon. 
 
In addition to the impact of acidity as such, nitrate and other forms of “fixed” (or “reactive”) 
nitrogen can lead to the fertilisation and ultimately eutrophication of open-ocean, coastal, 
freshwater and terrestrial ecosystems, as well as to the contamination of groundwater. 
While nutrients play an essential role in aquatic environments, problems arise when inputs 
become excessive and/or the ratio between nutrients is substantially changed. Typical 
examples of such problems are increased algal growth, changes in the biological 
community structure and biodiversity, including the occurrence of harmful algae, oxygen 
depletion and mass mortality of benthic organisms and fish. For instance, occasional “red 
tides” or coastal algal blooms are observed that may be devastating in their impact (Kahru 
et al, 2004; Cloern et al, 2005) and the Baltic Sea is suffering from severe eutrophication 
(Rönnberg and Bonsdorff, 2004). The LRT impact of eutrophying pollutants may result 
either from atmospheric deposition of nitrate or ammonia, or from riverine transport of 
dissolved nitrogen species (Galloway et al, 1995; Anderson et al, 2002; Prepas and 
Charette, 2003; Bouwman et al, 2002; Bouwman et al, 2005). Increasing reactive nitrogen 
in the environment and the resulting eutrophication is regarded by certain authors as one of 
the major challenges of global change (Nosengo, 2003; Galloway et al, 2004; Giles, 
2005b). 

5.2.5 Visibility impairment 

Various types of atmospheric aerosols lead to visibility impairment. Classic examples 
involving LRT include the Arctic haze and the “brown cloud” that frequently extends over 
broad areas of Asia (ASEAN, 2001; Wooster and Strub, 2002; UNEP-C

4
, 2002; Park et al, 

2003; CACAR, 2003a; Langmann and Heil, 2004; Benkovitz et al, 2004; Cyranoski and 
Fuyuno, 2005). 

5.2.6 Mercury 

The potential toxicological effects of mercury on wildlife (central nervous system, kidneys, 
reproduction, etc.) and ecosystems have been reviewed by UNEP (2002b). 

5.2.7 Persistent organic pollutants 

Experimentally, POPs/PBTs have been associated with significant environmental impacts 
in a wide range of species at virtually all trophic levels. For certain POPs/PBTs, there is 
some experimental evidence that low-level exposures may be associated with chronic non-
lethal effects including endocrine disruption, immunotoxicity, impairment of reproductive 
performance and carcinogenicity (Ritter et al, 1995; AMAP, 2004). A discussion of the 
validity of these findings is beyond the scope of this dossier. 
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5.2.8 Interactions 

The linkages between the impacts of “traditional” air pollutants and of those responsible for 
climate change have been reviewed by EEA (2004). 

5.3 Evolution of the perceived “spatial scale” of air pollution 

Keating et al (2004) point out that, while certain environmental and human health impacts 
have always been considered to be more or less global in scope (nuclear fallout, 
stratospheric ozone depletion and climate forcing), in other cases the perception of the 
“spatial scale” has evolved over the past decades. Thus, for photochemical smog, acid rain 
and aerosol particles, a gradual reassessment of the issues has occurred over time, with 
the focus shifting from the local or regional scale to a more global perspective. 
 
Keating et al (2004) describe the various pressures leading to a “tightening vice” of air 
pollution management. On the one hand, local emissions of the most acutely harmful air 
pollutants have been abated fairly successfully – at least in the developed countries – and 
further reductions are more and more difficult and costly to achieve. On the other hand, 
local air quality standards are becoming more stringent, while at the same time emissions 
in the developing world are rising and leading to increases in the regional and/or global 
background pollutant concentrations. 
 
Consequently, there is an increasing emphasis on pollutants prone to LRT, as regulators 
look to “upwind” jurisdictions to control their share of emissions. 
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6 International Regulatory and Monitoring Agreements 

In view of the observed LRT and potential impacts of a wide range of substances, as 
discussed above, a number of international agreements have been concluded in order to 
address and alleviate the underlying problems. Essentially, this is to be achieved by 
prescribing reductions in emissions, restrictions on use, or ultimate phase-out. 

6.1 Agreements that Explicitly Address Transboundary Pollution or Long-
Range Transport 

6.1.1 UNECE LRTAP Convention 

Broad international cooperation to combat the impacts that pollutants emitted from one 
nation have on its neighbours or more distant regions began in 1979, when the United 
Nations Economic Commission for Europe (UNECE) concluded its framework Convention 
on Long-range Transboundary Air Pollution (http://www.unece.org/env/lrtap/). This 
agreement now has 49 parties, including not only “European” countries, interpreted broadly, 
but also the United States and Canada. 
 
Although the LRTAP Convention was aimed initially at responding to the challenge posed 
by acid rain, a total of eight protocols have now been negotiated, identifying specific 
measures to be taken by the parties for a range of air pollutants: 

 The 1984 Geneva Protocol on Long-term Financing of the Cooperative Programme for 
Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe 
(EMEP); 

 The 1985 Helsinki Protocol on the Reduction of Sulphur Emissions or their 
Transboundary Fluxes by at least 30 per cent; 

 The 1988 Sophia Protocol concerning the Control of Nitrogen Oxides or their 
Transboundary Fluxes; 

 The 1991 Geneva Protocol concerning the Control of Emissions of Volatile Organic 
Compounds or their Transboundary Fluxes (targeting the most reactive volatile 
compounds); 

 The 1994 Oslo Protocol on Further Reduction of Sulphur Emissions; 

 The 1998 Aarhus Protocol on Heavy Metals (targeting mercury, cadmium and lead); 

 The 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs), targeting aldrin, 
chlordane, chlordecone, DDT, dieldrin, endrin, HCHs, heptachlor, hexabromobiphenyl, 
hexachlorobenzene, mirex, PAHs, PCBs, PCDDs, PCDFs, pentachlorophenol and 
toxaphene, with provisions for addition of further substances in the future; 

 The 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level 
Ozone (targeting sulphur, nitrogen oxides, ammonia and reactive VOCs). 

 
All of these protocols have been signed and ratified by sub-sets of the parties to the 1979 
Convention and all have entered into force. 
 
The LRTAP Convention is backed up by EMEP (http://www.emep.int/), a co-operative 
programme for monitoring and evaluation of the LRT of air pollutants in Europe. 

6.1.2 UNEP POPs – Stockholm Convention 

An important milestone in international cooperation on global dispersion and impact of 
pollutants was the conclusion in 2001 of the United Nations Environment Programme’s 
Stockholm Convention on Persistent Organic Pollutants (http://www.pops.int/). This 
agreement, whose geographical representation is much broader than that of the UNECE 
POPs protocol – since it includes many non-European and developing states – entered into 
force in 2004 and currently has 112 parties. It targets the following 12 compounds or 
families of compounds: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, 
hexachlorobenzene, mirex, PCBs, PCDDs, PCDFs and toxaphene. There are provisions for 
the addition of further substances. 

http://www.unece.org/env/lrtap/
http://www.emep.int/
http://www.pops.int/
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6.1.3 U.S. - Canada Air Quality Agreement 

The 1991 “Agreement Between the Government of the United States of America and the 
Government of Canada on Air Quality” 
(http://www.epa.gov/airmarkets/usca/agreement.html) was negotiated mainly to reduce 
emissions of SO2 and NOx and hence the transboundary acid deposition caused by these 
gases. However, an annex to the agreement also provides for the monitoring of other air 
pollutants of concern. 

6.1.4 The Great Lakes Binational Toxics Strategy 

The Canada - United States “Strategy for the Virtual Elimination of Persistent Toxic 
Substances in the Great Lakes” (http://www.epa.gov/glnpo/p2/bns.html), was approved in 
1997. It is based on the “Revised Great Lakes Water Quality Agreement” of 1978 
(http://www.ijc.org/php/publications/pdf/ID609.pdf) and covers not only a range of 
organochlorines, PAHs and other POPs/PBTs, but also certain compounds of mercury, 
cadmium, lead and tin. Although the focus of the treaty is on pollution of the Great Lakes by 
emissions from within the United States and Canada, LRT from worldwide sources is also 
considered explicitly. 

6.1.5 The International Joint Commission (U.S. - Canada) 

The International Joint Commission (http://www.ijc.org/en/home/main_accueil.htm) assists 
the United States and Canada in the protection of the transboundary environment, including 
the implementation of the “Great Lakes Water Quality Agreement” and the improvement of 
transboundary air quality. 

6.1.6 North American Agreement on Environmental Cooperation 

In 1993, the NAFTA countries Canada, Mexico and the United States signed the North 
American Agreement on Environmental Cooperation (NAAEC). A draft “North American 
Agreement on Transboundary Environmental Impact Assessment” was published in 1997 
and the current “Agenda for Action” of the North American Commission for Environmental 
Cooperation (NACEC, http://www.cec.org) includes provisions for addressing air pollution 
problems within transboundary airsheds: 
(http://www.cec.org/pubs_info_resources/law_treat_agree/pbl.cfm?varlan=english) 
(http://www.cec.org/files/pdf/POLLUTANTS/311-03-05_en.pdf). 
 
NACEC’s “Sound Management of Chemicals” project aims, inter alia, at identifying priority 
chemical pollution issues of regional concern. Protocols on both POPs/PBTs and metals 
(Hg, Cd, Pb) are being considered: 
(http://www.cec.org/programs_projects/pollutants_health/project/index.cfm?projectID=25&v
arlan=english). 

6.1.7 ASEAN Agreement 

In 1994, the 10 Southeast Asian nations belonging to the ASEAN partnership agreed to the 
formulation of a “Cooperation Plan on Transboundary Pollution” 
(http://www.aseansec.org/8938.htm). Although not restricted to atmospheric pollution, a 
major motivation of this agreement was clearly combating the haze from forest fires and 
biomass burning that regularly affects the whole region (ASEAN, 2001). Indeed, a specific 
“ASEAN Agreement on Transboundary Haze Pollution” was signed in 2002  
(http://www.fire.uni-freiburg.de/media/2003/WSSD-ASEAN-Agreement.pdf). 

6.1.8 East Asia Network 

The “Acid Deposition Monitoring Network in East Asia” (EANET, http://www.adorc.gr.jp/) 
was initiated in 1998 by 12 East Asian Nations, including Japan, China, Korea and Russia. 
This cooperation covers only scientific activities on acid deposition and atmospheric 
oxidants, without any regulatory prerogatives. 

6.1.9 Malé Declaration 

Eight South Asian governments approved the 1998 “Malé Declaration on Control and 
Prevention of Air Pollution and its Likely Transboundary Effects for South Asia”. The stated 
aim of this agreement is to achieve intergovernmental cooperation to address the 
increasing threat of transboundary air pollution and consequential impacts due to 
concentrations of pollutant gases and acid deposition on human health, ecosystem function 
and corrosion of materials (http://www.rrcap.unep.org/issues/air/maledec/aw_md.cfm). 

http://www.epa.gov/airmarkets/usca/agreement.html#entry
http://www.epa.gov/glnpo/p2/bns.html
http://www.ijc.org/php/publications/pdf/ID609.pdf
http://www.ijc.org/en/home/main_accueil.htm
http://www.cec.org/
http://www.cec.org/pubs_info_resources/law_treat_agree/pbl.cfm?varlan=english
http://www.cec.org/files/pdf/POLLUTANTS/311-03-05_en.pdf
http://www.cec.org/programs_projects/pollutants_health/project/index.cfm?projectID=25&varlan=english
http://www.cec.org/programs_projects/pollutants_health/project/index.cfm?projectID=25&varlan=english
http://www.aseansec.org/8938.htm
http://www.fire.uni-freiburg.de/media/2003/WSSD-ASEAN-Agreement.pdf
http://www.adorc.gr.jp/
http://www.rrcap.unep.org/issues/air/maledec/aw_md.cfm
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6.1.10 Harare Resolution 

Seven southern African nations endorsed the 1998 “Harare Resolution on the Prevention 
and Control of Regional Air Pollution in Southern Africa and its likely Transboundary 
Effects” (http://www.york.ac.uk/inst/sei/rapidc2/apina/apina-resolution.html). 

6.1.11 Arctic Council activities 

The “Plan to Eliminate Pollution of the Arctic”, approved in 2000 by the Arctic Council, i.e. 
an intergovernmental forum of the nations bordering the Arctic, was created to address 
pollution sources identified through the Arctic Monitoring and Assessment Programme, 
established in 1991 (Arctic Council, 2001; AMAP, 2002, 2004; http://www.arctic-
council.org/en/main/infopage/5/#amap). The transboundary nature of such pollution is self-
evident. First-phase priority will be given to POPs/PBTs, heavy metals, radioactivity and 
ozone-depleting substances. 
 
The “Programme for the Protection of the Arctic Marine Environment (PAME)”, established 
in 1983, is another initiative of the Arctic Council involving transboundary pollution 
(http://www.pame.is/).  

6.1.12 OSPAR Convention 

The 1992 Oslo and Paris (OSPAR) “Convention for the Protection of the Marine 
Environment of the North-East Atlantic” (http://www.ospar.org/) entered into force in 1998. 
Its contracting parties are 15 European countries and the European Community. OSPAR 
aims to prevent pollution of the North-East Atlantic by continuously reducing discharges, 
emissions and losses of hazardous substances (identified by specific “persistence, 
bioaccumulation and toxicity” criteria), with the ultimate aim of achieving concentrations in 
the marine environment near background values for naturally-occurring substances or close 
to zero for man-made substances. The prevention of pollution from land-based sources, as 
well as offshore ones, dumping and incineration are specifically cited in the Convention. 
Atmospheric, riverine and anthropogenic LRT is therefore a concern. 

6.1.13 Helsinki Convention 

The 1992 Helsinki “Convention on the Protection of the Marine Environment of the Baltic 
Sea Area” (HELCOM: http://www.helcom.fi/helcom.html) entered into force in 2000. The 
contracting parties are seven nations bordering the Baltic, and the European Community. 
The aims and focus of the Convention are similar to those of OSPAR, but transposed to the 
Baltic. 

6.1.14 Barcelona Convention 

The 1976 Barcelona “Convention for the Protection of the Marine Environment and the 
Coastal Region of the Mediterranean” (http://www.unepmap.org/home.asp) entered into 
force in 1978. The contracting parties are 21 states bordering the Mediterranean Sea, and 
the European Community. Protocols to the agreement relate to protection against pollution 
of the Mediterranean from land-based sources, dumping of hazardous wastes, etc.. 

6.1.15 UNEP Regional Seas Programme 

The “Global Programme of Action for the Protection of the Marine Environment from Land-
Based Activities” (http://www.gpa.unep.org/default.htm) was initiated by UNEP in 1974 and 
currently includes 13 regions, with 140 participating coastal states. The Barcelona 
Convention is the legal instrument for UNEP’s “Mediterranean Action Plan” 
(http://www.unepmap.org/), which is one of the components of the Regional Seas 
programme. Similarly, the legal framework for the “Caribbean Action Plan” is the Cartagena 
Convention, adopted in 1983 (http://www.cep.unep.org/law/cartnut.html). 

6.1.16 Basel Convention 

UNEP’s “Convention on the Control of Transboundary Movements of Hazardous Wastes 
and their Disposal” (http://www.basel.int/) was adopted in Basel in 1989. It entered into 
force in 1992 and counts most of the world’s nations as parties. This convention aims at 
reducing cross-border movements of hazardous wastes. It therefore addresses certain 
problems posed by “anthropogenic” LRT. 

http://www.york.ac.uk/inst/sei/rapidc2/apina/apina-resolution.html
http://www.arctic-council.org/en/main/infopage/5/#amap
http://www.arctic-council.org/en/main/infopage/5/#amap
http://www.pame.is/
http://www.ospar.org/
http://www.helcom.fi/helcom.html
http://www.unepmap.org/home.asp
http://www.gpa.unep.org/default.htm
http://www.unepmap.org/
http://www.cep.unep.org/law/cartnut.html
http://www.basel.int/
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6.2 Agreements in which Long-Range Transport is Implicitly Included 

In addition to the agreements listed above, in which transboundary pollution is addressed 
as a specific concern, there are other major international treaties that do not explicitly 
mention LRT, but whose focus is nevertheless on environmental and human health impacts 
of a global nature, caused by the release of substances that become broadly dispersed in 
the environment. 
 
Particularly noteworthy in this respect are the international conventions addressing 
stratospheric ozone depletion and climate change. The compounds currently regulated 
under these agreements are all volatile substances having atmospheric lifetimes ranging 
from months to millennia. They are thus highly prone to LRT and become distributed 
throughout the atmosphere on a hemispheric or even global scale. 

6.2.1 Montreal Protocol 

UNEP’s 1987 “Montreal Protocol [to the 1985 Vienna Convention] on Substances that 
Deplete the Ozone Layer”, together with the various Amendments and Adjustments agreed 
since its entry into force in 1989 (http://www.unep.org/ozone), aims at reducing emissions 
of ozone-depleting substances and ultimately phasing them out. The target compounds are 
CFCs, HCFCs, halons, carbon tetrachloride, 1,1,1-trichloroethane and methyl bromide. 

6.2.2 Kyoto Protocol 

UNEP’s 1997 “Kyoto Protocol to the United Nations Framework Convention on Climate 
Change” (http://unfccc.int/essential_background/kyoto_protocol/items/2830.php) has the 
objective of reducing emissions of the main greenhouse gases: CO2, CH4, N2O, HFCs, 
PFCs and SF6. Despite their significant contribution to global warming, CFCs are not 
included, since they are scheduled for phase-out under the Montreal Protocol. 
 
 
 
 
 

http://www.unep.org/ozone
http://unfccc.int/essential_background/kyoto_protocol/items/2830.php


 

 
41 

7 Regulatory Criteria Expressing the Propensity of a 

Substance to Undergo Long-Range Transport 

Certain of the international treaties discussed in the previous chapter, as well as some 
national or regional regulations, include a criterion for expressing the ability of a substance 
to undergo LRT. This characteristic is generally one item of a set of criteria used to 
determine whether or not a compound should be classified as a POP/PBT. These sets of 
criteria will be used for adding new compounds to the lists of substances covered by the 
respective agreements or regulations. However, some form of expert judgement may also 
be required, in addition to strict compliance with the numerical “bright-line” criteria, before a 
new compound is listed. 
 
Not all definitions of POPs/PBTs include a specific LRT criterion, although many do have a 
criterion for persistence in the atmosphere, which effectively determines the potential for 
atmospheric LRT. 
 
The main POP/PBT criteria have been summarised by Euro Chlor (2003). 

7.1 Monitoring evidence 

In the case of the UNECE-LRTAP Aarhus Protocol on POPs, the procedure for addition of 
new substances includes submitting a “risk profile”, based on criteria defined by UNECE 
Executive Body Decision 1998/2 
(http://www.unece.org/env/documents/2000/ece/eb/ece%20eb%20air.60.e.pdf). The 
potential for long-range transboundary atmospheric transport is defined by certain physico-
chemical properties of the substance (to be discussed below) or, alternatively, by 
“monitoring data showing that the substance is found in remote regions”. 
 
In the case of the UNEP Stockholm Convention on POPs, the screening criteria for 
additional compounds are listed in its Annex D 
(http://www.pops.int/documents/convtext/convtext_en.pdf). Information is to be provided on 
“measured levels of the chemical in locations distant from the sources of its release that are 
of potential concern”. Additionally, the criterion “monitoring data showing that long-range 
environmental transport of the chemical, with the potential for transfer to a receiving 
environment, may have occurred via air, water or migratory species” is listed as a possible 
alternative to consideration of certain environmental fate properties or model results (to be 
discussed below). 
 
NACEC’s draft “Sound Management of Chemicals Process (SMOC) for Identifying 
Candidate Substances for Regional Action” 
(http://www.cec.org/programs_projects/pollutants_health/smoc/criter.cfm?varlan=english) 
adopts similar language, since it provides for examining “monitoring evidence of 
transboundary transport for metals or POPs/PBTs (e.g. appearance in biota)”. 
 
The Canadian Toxic Substances Management Policy (TSMP) includes persistence in any 
one of four media as one of the criteria to be fulfilled for scheduling chemicals for virtual 
elimination. The regulation states that “a substance may be considered as persistent in air if 
it is shown to be subject to atmospheric transport to remote regions such as the Arctic” 
(http://www.ec.gc.ca/toxics/TSMP/en/track1.cfm). 
 
It should be borne in mind that monitoring evidence as a measure of LRT can only be used 
a posteriori, once the substance has been released to the environment and not prior to its 
commercialisation. 

http://www.unece.org/env/documents/2000/ece/eb/ece%20eb%20air.60.e.pdf
http://www.pops.int/documents/convtext/convtext_en.pdf
http://www.cec.org/programs_projects/pollutants_health/smoc/criter.cfm?varlan=english
http://www.ec.gc.ca/toxics/TSMP/en/track1.cfm
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7.2 Modelling evidence 

The UNEP POPs Convention adopts, as evidence for LRT potential and as an alternative to 
monitoring data, “environmental fate properties and/or model results that demonstrate that 
the chemical has a potential for long-range environmental transport through air, water or 
migratory species, with the potential for transfer to a receiving environment in locations 
distant from the sources of its release”. There is an additional proviso in this respect that 
“for a chemical that migrates significantly through the air, its half-life should be greater than 
two days”. 
 
The UNECE-LRTAP POPs Protocol defines a procedure for reviewing “risk profiles” 
submitted with a view to adding new substances. This procedure includes an evaluation of 
“the monitoring or equivalent scientific information suggesting long-range transboundary 
atmospheric transport”. It is likely that modelling evidence would be deemed “equivalent” to 
monitoring. 

7.3 Vapour pressure 

The UNECE-LRTAP POPs Protocol includes, as a criterion for atmospheric LRT potential, 
“evidence that the substance has a vapour pressure below 1,000 Pa and an atmospheric 
half-life greater than 2 days”. The vapour pressure criterion warrants some explanation. 
Clearly, high volatility would be no impediment to atmospheric LRT: indeed, the opposite is 
the case. Some clue as to the motivation behind the volatility criterion is given by a 
background document to the UNECE criteria (AEAT, 1995), which states that “substances 
with vapour pressure > 1000 Pa are considered so volatile that they will remain 
predominantly in the atmosphere and not transfer to the condensed phase”. This is only 
partially true: for instance, some substances are very volatile, but also highly soluble in 
water, so they would partition to aqueous compartments. In any case, the 1000 Pa upper 
limit does not represent a low enough volatility for substantial uptake of the substance to 
particles in the atmosphere, which would require a vapour pressure about 5 orders of 
magnitude lower (Bidleman, 1988). The fraction of the substance that partitions to other 
“condensed” phases (water, soil, sediment, biota) depends not only on volatility, but also on 
the affinity of the substance for these phases (hydrophilicity, lipophilicity). So it would seem 
that the 1000 Pa cut-off is just a crude demarcation that enables one to avoid classifying as 
POPs a large number of very volatile compounds (including those targeted by the Montreal 
and Kyoto Protocols), without having to go through an assessment of their toxicity or 
tendency to bioaccumulate.  
 
The NACEC-SMOC draft includes this same “vapour pressure < 1000 Pa” criterion, also 
with the proviso that air persistence is > 2 days. 
 
Although some volatility is obviously necessary for atmospheric LRT, compounds with 
extremely low vapour pressures have been found in remote regions far from their presumed 
sources. This is the case, for example, for a number of currently used pesticides, having 
vapour pressures ranging from 10

-8
 to 5 x 10

-2
 Pa, found in an ice core from the Norwegian 

Arctic (Hermanson et al, 2005). 

7.4 Atmospheric half-life 

An atmospheric half-life greater than 2 days is a common criterion, either for LRT as such 
or for persistence. This numerical value is included in the following treaties and regulations: 
UNECE-LRTAP POPs Protocol, UNEP POPs Convention, NACEC-SMOC and Canada-
TSMP. The scientific basis for this value has been discussed by Bidleman (1997) and 
Rodan et al (1999). As has been mentioned above, a 2-day half-life roughly corresponds to 
the lower limit for intercontinental atmospheric transport, except under exceptional 
meteorological circumstances. 

7.5 Half-life in water 

Many treaties and regulations do not list any specific criteria for LRT or for persistence in 
the atmosphere, but do assess chemicals on the basis of their persistence in other media. 
These include marine or fresh water, which is of course relevant to riverine and oceanic 
LRT. Half-lives in water greater than thresholds between 40 days and 6 months are 
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generally adopted as a criterion for persistence in water (Rodan et al, 1999; Euro Chlor, 
2003). 
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8 Summary and Conclusions 

Long-Range Transport (LRT) is a phenomenon which encompasses many classes of 
natural and anthropogenic substances and affects every point of the globe. It is, 
nevertheless, often presented and perceived merely as a process by which semi-volatile 
organic compounds are emitted at tropical or temperate latitudes, migrate northwards 
through the atmosphere in a series of volatilisation-recondensation cycles or “hops”, and 
finally accumulate in the Arctic and Antarctic food chain, to the detriment of the indigenous 
populations. While this image is not totally incorrect, the present dossier amply 
demonstrates that it is overly simplistic.  
 
The atmosphere being the most mobile of the environmental media, air is a major vector for 
LRT. However, it is not the only one: for non-volatile, water-soluble substances, transport 
along rivers and through the oceans is preponderant. Furthermore, in specific cases, 
migratory animal species, drifting ice and anthropogenic transport for commercial or other 
reasons can all play a role in the worldwide environmental dispersion of chemicals. 
 
Intercontinental atmospheric transport generally occurs on a time-scale of about 3-30 days. 
Pollutants lofted into the free troposphere by deep convection, mountain-slope forcing or 
frontal systems will typically travel further and faster than those that are simply advected 
horizontally in the atmospheric boundary layer. The time-scale for dissolved species to be 
transported by ocean currents from northern mid-latitudes to the Arctic is several years. 
 
Volatile pollutants with atmospheric lifetimes of years or longer experience no impediment 
to LRT once they are emitted to air. Whatever the location and timing of their release, their 
concentrations become practically uniform throughout the atmosphere, so the emission of a 
given amount anywhere on Earth makes the same contribution to global pollution. This is 
the case, for example, for the major greenhouse gases carbon dioxide, methane and 
nitrous oxide, as well as for the ozone-depleting chlorofluorocarbons and halons. For air 
pollutants with lifetimes of several months, concentrations become fairly uniform within the 
hemisphere of emission, but not in the opposite hemisphere, since crossing the equatorial 
“barrier” takes about a year. For shorter-lived pollutants with atmospheric lifetimes of days 
or weeks, the propensity of a substance to undergo atmospheric LRT depends on its 
intrinsic physico-chemical properties (reactivity, volatility and water solubility), as well as on 
its mode of entry into the environment, the location and time of its emission and the 
prevailing meteorological conditions. 
 
Atmospheric transboundary and intercontinental LRT is well documented for many classes 
of substances. While some of these are purely or primarily anthropogenic (e.g. pesticides, 
PCBs, lead, and radioactive fallout from nuclear testing and accidents), others have partly 
natural and partly man-made sources. Examples of such substances of mixed origin are 
carbonaceous particles, carbon monoxide, nitric oxide and other combustion by-products; 
ozone arising from atmospheric reactions of the afore-mentioned; sulphur dioxide and 
sulphate aerosols; mercury; and a range of volatile organics including some halogenated 
species, such as methyl chloride, methyl bromide, chloroform and bromoform. Finally, a 
number of substances of exclusively natural origin are also well known to undergo 
intercontinental LRT. Examples are desert sand, soil dust, volcanic ash, sea salt, pollen, 
pathogenic microbes and natural radionuclides (e.g. 

210
Pb resulting from the decay of 

radon). 
 
Contributions to understanding the major atmospheric LRT pathways have been made by 
analysing samples taken at ground level, as well as from balloons and aircraft, with back-up 
from satellite observations and modelling studies. 
 
The winds blowing from the west at mid-latitudes exert a major influence on intercontinental 
atmospheric LRT, leading to certain preferential pathways. There is an increasing 
awareness of transport of pollution from Asia to North America. The substances involved 
include ozone and its precursors, suspended particles, sulphur dioxide and sulphate 
aerosols, pesticides and mercury. In turn, Europe is affected by pollutants from North 
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America, while Asia is impacted by European emissions. In the southern hemisphere, there 
is also evidence for eastward transport of pollution, from southern Africa to Australia, New 
Zealand and the islands of the southern Pacific. Towards the equator, the easterly trade 
winds tend to govern atmospheric circulation, as illustrated by the transport of sand from 
North African deserts to the central part of the American continent. In the polar regions too, 
the air flow is mainly from the east. However, the general pattern of westerly or easterly 
circulation is disrupted over broad areas of the globe, so that atmospheric LRT also occurs 
in other directions, often with a seasonal dependence. A few illustrative examples are: 
transport of Saharan dust northwards to Europe in spring and summer; inflow of “haze” 
(mainly due to sulphur species) into the Arctic from Eurasia in winter; the contamination of 
Sweden and Finland by fallout from the nuclear accident at Chernobyl in Ukraine; and the 
presence in the “pristine” polar ice-caps of pesticides and heavy metals (including Pb from 
metallurgical operations carried out several millennia ago). 
 
Air quality at a given location can be influenced by emissions from another continent either 
through an increase in the more or less ubiquitous hemispheric background levels of 
pollution, or through discrete episodic flows of enhanced pollutant levels.  
 
A broad range of numerical models has been developed and applied for predicting how 
chemicals are distributed in the environment and for assessing their overall persistence and 
long-range transport potential (LRTP). These models range in complexity from simple 
“evaluative” multimedia box models to three-dimensional, georeferenced general circulation 
chemistry-transport models with high spatial resolution. Several comparative studies have 
led to the conclusion that most models predict similar rankings of LRTP values for sets of 
chemicals encompassing widely varying physico-chemical properties. Most models account 
for the “grasshopper effect” by which semi-volatile chemicals undergo repeated cycles of 
volatilisation and partitioning to condensed phases, while some models even allow for the 
calculation of the number of “hops” taken by a chemical on its journey from warmer to 
colder latitudes. Certain models have been developed for the express purpose of exploring 
source-receptor relationships, i.e. to answer questions such as “Where does pollution at 
this location come from?” or “Which downwind areas will be affected by emissions from 
regions of production?” 
 
It should be emphasised that LRT is not in itself a concern, but only a trigger for potential 
concern, which will be warranted if the pollutant is demonstrated or predicted to have an 
impact at a receptor site. Such an impact may affect the atmosphere itself (e.g. ozone 
depletion, global warming or photochemical smog formation) or may cause an adverse 
effect on human health through inhalation, in which case the pollutant will be harmful even 
without being deposited to the Earth’s surface. In many instances, however, deposition 
followed by uptake into living organisms, possibly with accumulation through the food chain, 
is a prerequisite for damage to the environment or human health. Each chemical needs to 
be evaluated in this respect on a case-by-case basis, with the potential for LRT being 
assessed in conjunction with potentially adverse properties, such as persistence, 
bioaccumulation, toxicity and the capacity to affect the atmosphere. 
 
Numerous impacts may be caused by substances transported to locations remote from 
their emission sources. Human health may be adversely affected by inhalation of airborne 
pollutants (e.g. nitrogen dioxide, ozone, suspended particles, or sulphur dioxide, all of 
which contribute to respiratory ailments) or by ingestion of deposited substances with food 
or drinking water (e.g. heavy metals, radionuclides or POPs/PBTs, each substance having 
its own diverse toxicological end-points). The environment itself is also vulnerable to certain 
long-range transported chemicals. Apart from the atmospheric impacts noted above 
(namely ozone depletion, climate warming and photochemical smog, all of which can be 
harmful to both human health and ecosystems), major concerns arise from transboundary 
pollution by sulphur dioxide, nitrogen oxides and ammonia, which are converted into acids 
that cause damage to forests, lakes and rivers, as well as to materials of construction. In 
addition to their role in acidification of the environment, nitrogen oxides also lead to 
eutrophication of freshwater bodies and coastal zones, subsequent to LRT of NOx through 
the atmosphere or of nitrate with groundwater and rivers. Visibility impairment of broad 
areas of the Earth is another consequence of atmospheric LRT. Noteworthy examples are 
the Arctic haze and the huge Asian “brown cloud”. For certain POPs/PBTs, there is some 
evidence that low-level exposures may be associated with chronic non-lethal effects 
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including endocrine disruption, immunotoxicity, dermal effects, impairment of reproductive 
performance and carcinogenicity. 
 
Broad international cooperation to combat the impacts that pollutants emitted from one 
nation have on its neighbours or more distant regions began in 1979, when the United 
Nations Economic Commission for Europe (UNECE) concluded its framework Convention 
on Long-range Transboundary Air Pollution. This agreement, whose parties include the 
United States and Canada as well as European nations, was aimed initially at responding 
to the challenge posed by acid rain, but a total of eight protocols have now been 
negotiated. These cover, amongst others, tropospheric ozone precursors, heavy metals, 
POPs/PBTs and substances responsible for eutrophication. Another important milestone in 
international cooperation on global dispersion and impact of pollutants was the conclusion 
in 2001 of the United Nations Environment Programme’s Stockholm Convention on 
Persistent Organic Pollutants, whose geographical representation is much broader than 
that of the UNECE POPs protocol – since it includes many non-European and developing 
states. In addition to these two conventions that fall under the aegis of the United Nations, 
there are many other regional agreements whose principal or ancillary objective is to 
protect various territories or seas from transboundary pollution. Such agreements cover: 
the NAFTA countries (USA, Canada and Mexico); the North American Great Lakes; various 
groupings of Asian countries; an alliance of southern African nations; the Arctic; the North-
East Atlantic; the Baltic; the Mediterranean; the Caribbean; and a number of other “regional 
seas”. 
 
Many of the major international agreements on harmful substances define criteria 
expressing the propensity of a compound to undergo LRT. This information can be used in 
conjunction with other properties (persistence in various environmental media, tendency to 
bioaccumulate, toxicity, ozone depleting and global warming potentials, etc.) to determine 
whether or not to schedule the chemical concerned for regulatory action. A common metric 
for LRT is atmospheric persistence, characterised by a half-life greater than 2 days (i.e. a 
lifetime > 3 days), which – as mentioned above – is the approximate lower limit for 
intercontinental atmospheric transport. A secondary criterion in several conventions is 
“monitoring evidence in remote regions” (such as the Arctic). This measure of LRT can, 
however, only be used a posteriori, once the substance has been released to the 
environment and not prior to its commercialisation. 
  
While certain environmental and human health impacts of chemicals have always been 
considered to be more or less global in scope (nuclear fallout, stratospheric ozone 
depletion and climate forcing), in other cases the perception of the “spatial scale” has 
evolved over the past decades. Thus, for photochemical smog, acid rain and aerosol 
particles, a gradual reassessment of the issues has occurred over time, with the focus 
shifting from the local or regional scale to a more global perspective. Indeed, local 
emissions of the most acutely harmful air pollutants have been abated fairly successfully – 
at least in the developed countries. Further reductions are more and more difficult and 
costly to achieve. On the other hand, local air quality standards are becoming more 
stringent, while at the same time emissions in the developing world are rising and leading to 
increases in the regional and/or global background pollutant concentrations – tropospheric 
ozone being a noteworthy example. Consequently, there is an increasing emphasis on 
pollutants prone to LRT, as national regulators become only too aware of their diminishing 
scope for effective action and look to “upwind” jurisdictions to control their share of 
emissions. Indeed, fears are understandably raised that intercontinental transport of 
pollution will at least partially negate the results of local efforts to reduce critical exposure 
levels. 
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The voice of the European chlorine industry, Euro Chlor plays a key 
communication and representation role on behalf of its members, 
listening and responding to society’s concerns about the 
sustainability of chlorine chemistry. 
 
Euro Chlor helps members improve safety standards whilst 
conducting science, advocacy and communications programmes. 
The Brussels-based federation was founded in its current form in 
1989 and speaks on behalf of 97% of chlorine production in the EU-
25 plus Norway and Switzerland. 

Euro Chlor 

Euro Chlor • Avenue E. Van Nieuwenhuyse 4, box 2 • B-1160 Brussels, Belgium 

Tel: +32 2 676 72 11  |  Fax: +32 2 676 72 41 

Email: eurochlor@cefic.be  |  www.eurochlor.org 


